Probabilistic programming and the protein folding problem

Thomas Hamelryck Dpt. of Biology and Dpt. of Computer Science (DIKU) University of Copenhagen, Denmark *AI Seminar, KU, Sep. 2019*

The cell - 50% protein

Picture: A bacterial cell by David Goodsell

Protein structure

Serotonin receptor with an antimigraine drug. The membrane is shown schematically in gray.

Pictures: Protein structures by David Goodsell

Protein sequence determines fold

ANERGHPKLA AFGVGHSAQW PNTSVHGFDZ PLQACVTSSH KLRTNNMKLW

Christian Anfinsen (1916-1995)

It's complicated

Pictures: PHA-L, 231 amino acids (PDB: 1FAT, Hamelryck et al., 1996)

Protein folding and dihedral angles

1997: Rosetta

Simons et al., **J. Mol. Biol.**, 1997

Pictures: Kaufman et al., Biochemistry, 2010 and Wikipedia

2011: EVfold

Marks et al., PLoS ONE, 2011

N-OO & OO OO OO O & OO O C

2018: DeepMind's AlphaFold

- "Unprecedented progress in the ability of computational methods to predict protein structure.", CASP13
- AlphaFold: 25/43 most accurate prediction
 - Second best: 3/43

T0954 / 6CVZ

T0965 / 6D2V

T0955 / 5W9F

Structures:

2018: AlQuraishi's end-to-end prediction

• Mohammed AlQuraishi, Cell Systems, 2019 (bioRxiv, 2018)

Procrustes problems

Theseus slaying Procrustes.

Pictures: Wikipedia / ancientgreecereloaded.com

Point estimates versus distributions

• Epistemic randomness

- Randomness due to modelling
- Measurement noise
- Limited data
- Poor model
- Estimation procedures
- Aleatory randomness
 - Intrinsic randomness

An "ensemble" of 44 crystal structures of lysozyme.

The Bayesian calculus

Thomas Bayes (1701-1761)

posterior
$$= \frac{\text{likelihood} \times \text{prior}}{\text{evidence}}$$

$$p(\theta \mid \mathbf{d}) = \frac{p(\mathbf{d} \mid \theta)\pi(\theta)}{p(\mathbf{d})}$$

The Bayesian calculus

posterior =
$$\frac{\text{likelihood} \times \text{prior}}{\text{evidence}}$$

 $p(\theta \mid \mathbf{d}) = \frac{p(\mathbf{d} \mid \theta)\pi(\theta)}{p(\mathbf{d})}$

The theory that would not die

Bayes in the 21st century

Probabilistic Programming

Openbox Models Blackbox Inference Engine

Automatic inference

Pictures: Mathieu Lê / John Winn, Microsoft Research Cambridge (adapted)

Deep probabilistic programming

theano

Pyro

Bayesian linear model

Picture (right): Wikipedia

Bayesian linear model in PyMC3

 $a \sim N(a \mid 0, 1)$

- $b \sim N(b \mid 0, 1)$
- $\sigma \sim N_+(0,1)$

$$y \sim N(y \mid \mu, \sigma)$$

 $\mu = a + bx$

from pymc3 import *

```
with Model() as model:
    # Define priors
    a = Normal('a', 0, sd=1)
    b = Normal('b', 0, sd=1)
    sigma = HalfNormal('sigma', 1)
```

```
# Define likelihood
likelihood = Normal('y', mu=a+b*x,
    sd=sigma, observed=y)
```

Inference!

start = find_MAP() # Find starting value
step = NUTS() # Sampling
trace = sample(2000, step, start=start)

How I got involved

 $f(\phi,\psi)=Z_c(\kappa_1,\kappa_2,\kappa_3)~\exp[\kappa_1\cos(\phi-\mu)+\kappa_2\cos(\psiu)-\kappa_3\cos(\phi-\mu-\psi+
u)]$

References: TorusDBN, PNAS, 2008, 2014; EvoTorusDBN, Mol. Biol. Evol., 2017

Generative models of local structure

- TorusDBN, Boomsma et al., PNAS, 2008, 2014
- EvoTorusDBN, Golden et al., Mol. Biol. Evol., 2017

 $p(\boldsymbol{\phi}, \boldsymbol{\psi}, \mathbf{a} \mid \boldsymbol{\theta})$

Bayesian end-to-end prediction

ANERGHPKLAAF GVGHSAQWPNT SVHGFDZPLQAC VTSSHKLRTNNM KLWERHKLNCAS PTWKHERGHPKL

Protein structure superposition

- Minimize the root mean square deviation (RMSD) of the atomic positions
 - Kabsch method
 - Acta Crystallographica, 1976
 - Singular value decomposition
- Problems due to unrealistic assumptions
 - Assumes atoms have **equal variance**
 - Assumes atoms are **uncorrelated**

Protein structure superposition

- Minimize the root mean square deviation (RMSD) of the atomic positions
 - Kabsch method
 - Acta Crystallographica, 1976
 - Singular value decomposition
- Problems due to unrealistic assumptions
 - Assumes atoms have **equal variance**
 - Assumes atoms are **uncorrelated**

Theseus maximum likelihood model

- Douglas Theobald, PNAS, 2006
 - Based on Mardia-Dryden model, 1989

$$\mathbf{X}_{1,i} \sim \mathcal{N}_3(\mathbf{M}_i, \sigma_i \mathbf{I}_3)$$

$$\mathbf{X}_{2,i} \sim \mathcal{N}_3(\mathbf{R}\mathbf{M}_i + \mathbf{T}, \sigma_i \mathbf{I}_3)$$

Bayesian Theseus-PPL model

- Implemented in Pyro / PyTorch
- Priors and likelihood
 - Student's t for M and likelihood
 - Normal prior for T
 - HalfNormal for diag(U)
 - Quaternion prior for R
- MAP estimation
 - Gradient descent
- Bayesian posterior
 - Hamiltonian Monte Carlo/NUTS
 - Variational inference

Quaternions and rotations

×	1	i	j	k
1	1	i	j	k
i	i	-1	k	-j
j	j	-k	-1	i
k	k	j	-i	-1

First example: 2CPD

First example: 2CPD

Second example: 2YS9

Second example: 2YS9

Towards a deep generative model

Conclusions

- Probabilistic Programming is an **emerging paradigm** on par with Deep Learning and Big Data Analytics
- We conjecture it will soon be possible to perform
 Bayesian end-to-end protein structure prediction
 using deep probabilistic programming
- Theseus-PPL provides a suitable likelihood function
 - Rotation and translation invariant
 - Robust w.r.t. prediction errors
 - Low dimensional and on the "right space"
- Protein structure prediction can serve as a **paradigm problem** for deep probabilistic programming

Kanti Mardia, Leeds

Douglas Theobald, Brandeis

Lys Sanz Moreta, DIKU

Jotun Hein, Michael Golden, Oxford

Ahmad Salim Al-Sibahi, DIKU

U Fritz Henglein, DIKU

Funding & reference

"A probabilistic programming approach to protein structure superposition", **16th IEEE-CIBCB conference**, Tuscany, Italy, July 2019

