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Outline

QOutline of talk:
* In the beginning: b-jet tagging in ALEPH

e HEP data and why it is exciting for Machine Learning (ML)
* Going large scale: Electrons and photons in ATLAS

— Data samples, variables, and selections

— Electron PID and Energy Reconstruction (ER)

— Discussion of performance measures (loss functions)
e Looking at the future: v-reconstruction in IceCube

Purpose of talk:

e Show Machine Learning cases in science.
* Present HEP data, and why it is great (but also cumbersome!)
* Open up for possible inspiration/ collaboration

In the following, all numbers and plots are “Not Even Preliminary”, and should
in not be used elsewhere.



@ATLAS

EXPERIMENT
http://atlas.ch

Run: 203602

Event: 82614360 \

Date: 2012-05-18 ) ] n
Time: 20:28:11 CEST

J ,g.'

Candidate: =

Higgs > ZZ* > 4 leptons (e or p) BRI \f\. = g
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Particle physics data and simulation

To make sure that we understand our experiment we use simulation extensively:
e Detector optimisation (before experiment)
e Reconstruction design/optimisation (before/during experiment)
e Selection optimisation (during experiment)
e Signal efficiency estimates (during experiment)

The simulation is done in three steps: Event generation, Simulation, and Digitisation.

The total CPU time needed for one event is about 20-30 minutes, and we have now
simulated about a billion events (using 0.5M cores).

The simulation is done from first principles, and there are therefore (smaller)
differences between simulation and data (maybe a point of interest to fix?).



Aim of this project

Electrons and photons play a central role in the ATLAS physics programme, in

particular in Higgs physics, where they dominate the two golden channels.
Current methods use likelihood approach (PID) and simple ML (Energy).

Given the cost of running, we would be satisfied, if we could add 10% to each of

these in terms of statistics, knowing this would also benefit many other analysis.
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In the beginning:
b-jet tagging
in ALEPH



ALEPH b-jet tagging

25 years ago, particle physics was actually at the forefront of using Machine

Learning. We had large computers and much data fit for ML usage.

At the time, LEP was searching for the
Higgs boson at lower masses, where

its decay was almost always to b-quarks.

For this reason, many resources were

used to get the best possible b-jet
tagging in place.



ALEPH b-jet tagging

25 years ago, particle physics was actually at the forefront of using Machine

Learning. We had large computers and much data fit for ML usage.

Impact parameter significance:

At the time, LEP was searching for the QA [Mean 05269
o 3
: 3 a
Higgs boson at lower masses, where 3 3 @)
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its decay was almost always to b-quarks. R e o
3 (b)
For this reason, many resources were L
) . e Mean 5.599
used to get the best possible b-jet ©)
tagging in place. ;
—5 Mean 7.307.L
. . (d)
Both lifetime (displaced vertices), 3
jet shape, and lepton pT was used, e s a0
but non of these by themselves From Ph.D. of Steven Armstrong (1999) 8/C;
. . Figure 3.5: Impact parameter significance (6/05) distributions for (a) frag-
pI'OVlde a gOOd Way tO SeleCt b-]etS. megntation or tL;ackspfrom uds e%fents, (b) tracks from weakly decayinggc
hadrons, (c) tracks directly from b hadron decay, (d) tracks from the cascade
decay of a ¢ hadron from the decay of a b hadron.




ALEPH b-jet tagging

However, using one of the very first ML algorithms (JetNet 3.4), six variables
were put together in a neural network with two hidden layers each with
10 neurons:

e Light quark (uds) jet probability from track impact parameter significance.
* Difference in Chi2 from search for secondary vertices in jet.

e Transverse momentum of (possible) electron/muon in jet.

* Boosted sphericity of jet.

* Energy flow multiplicity (scaled by jet energy).

* Sum of transverse momenta (with respect to the jet axis) squared.

The neural network was trained on 400.000 simulated
events, and though I haven’t been able to find the exact
time used for this training, colleagues have told me

/1
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“many hours, sometime days”.

V

Ui 22

Interestingly, my students now code the setup in about
an hour, and get results in minutes.
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ALEPH b-jet tagging

The result of these labours was a very nice b-jet tagging variable, which allowed
ALEPH to get the most out of their data.

e Dato
CIM.C. b events

2 M.C. c events
£ M.C. uds events
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ALEPH b-jet tagging

A more “modern” plot could look like this: _

Btags of signal and different types of backgrounds
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Going large scale:
e/y PID & ER
in ATLAS



Overview

Currently in ATLAS, electrons and photons are identified using a likelihood approach:

Ls

dp=——,
L Ls +Lp

Ls(%) = l—[ Py i(x;)
i=1

The likelihood is composed of 22 variables,

for which 1D histograms are used to

compute the likelihood value. 9 calorimeter variables

To minimise correlations, the likelihood is
divided into regions of Er and n.

This makes for a very transparent approach,

which at the same time performs well.

The question is, if there is more information
to be gained, and thus a more powerful PID
to be gotten.

Enter Machine Learning (ML)...

Type Description Name
Hadronic leakage | Ratio of Er in the first layer of the hadronic calorimeter to Et of the EM cluster | Rya;
(used over the range || < 0.8 or || > 1.37)
Ratio of Et in the hadronic calorimeter to Et of the EM cluster Ryag
(used over the range 0.8 < || < 1.37)
Back layer of Ratio of the energy in the back layer to the total energy in the EM accordion 13
EM calorimeter calorimeter
Middle layer of Lateral shower width, ‘/ (ZEm})/(ZE;) — (EEm;)/(ZE;))?, where E; is the W,
EM calorimeter energy and 7; is the pseudorapidity of cell i and the sum is calculated within
a window of 3 x 5 cells
Ratio of the energy in 3x3 cells over the energy in 3X7 cells centered at the R
electron cluster position
Ratio of the energy in 3X7 cells over the energy in 7x7 cells centered at the R,
electron cluster position
Strip layer of Shower width, \/ (ZEi(i — imax)?)/(ZE;), where i runs over all strips in a window | w0
EM calorimeter of A x A¢ =~ 0.0625 x 0.2, corresponding typically to 20 strips in 77, and
imax is the index of the highest-energy strip
Ratio of the energy difference between the largest and second largest energy Esio
deposits in the cluster over the sum of these energies
Ratio of the energy in the strip layer to the total energy in the EM accordion fi
calorimeter
Track quality Number of hits in the B-layer (discriminates against photon conversions) NBlayer
Number of hits in the pixel detector Npixel
Number of total hits in the pixel and SCT detectors nsi
o o Transverse impact parameter dy
8 traCklng Varlables Significance of transverse impact parameter defined as the ratio of do Tay
and its uncertainty
Momentum lost by the track between the perigee and the last Ap/p
measurement point divided by the original momentum
TRT Total number of hits in the TRT ATRT
Ratio of the number of high-threshold hits to the total number of hits in the TRT | Fgr
Track-cluster An between the cluster position in the strip layer and the extrapolated track Ay
matching A¢ between the cluster position in the middle layer and the extrapolated track A¢>
Defined as A¢,, but the track momentum is rescaled to the cluster energy Adres
4 matChlng Variables before extrapolating the track to the middle layer of the calorimeter
T Ratio of the cluster energy to the track momentum E/p
[ Conversions Veto electron candidates matched to reconstructed photon conversions isConv

1 conversion variable (for photons)
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Electron PID - on MC
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Reweighing

E_T distribution of Signal and Background for electron PID
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The background is reweighed to look like signal in ET, n and {w)

using GBReweighter (https:/ / arogozhnikov.github.io /hep_ml/reweight.html)
This is a general issue to be solved in physics involving simulations.

Total weights Bkg
Total weights Sig

10!
I|||||||||
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Pileup
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Electron PID performance

The electron PID performance is generally much improved with ML:

Evaluation set, bkg only hadrons

10° o . o
We train the Machine Learning (ML)
Lukas Ehrke . i ) )
algorithm (LightGBM) with a mix of
0! .
g backgrounds, and then see how well it
E performs on each.
g We compare to the current ATLAS LH,
[as]
not to boast our results, but as a solid
o LGBM with LH vars reference, which helps us getting the
7 GeV < Ep <10 GeV, —0.6 <7 < —0.1 — | LHvalye
0.80 082 084 086 088 090 092 0094 096 098 1.00 most perfOI‘maIlt & generel I'eSllltS.
Signal eff.
100 Evaluation set, bkg only photons 100 Evaluation set, bkg only bkg electrons
107! 107!
gﬁlo_2 gﬁlo_2
s s
1073 LGBM with LH vars 1073 LGBM with LH vars
7 GeV < By < 10 GeV, —0.6 < 1 < —0.1 — | LHvalye 7 GeV < By < 10 GeV, —0.6 < 1 < —0.1 — | LHvalye
0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

Signal eff.

Signal eff.




Background acc.

Electron PID performance

The electron PID performance is generally much improved with ML:

All Models, Test set

10 —— LGBM 38 vlariables BDT, AS =I 1025, lOOO*AUC‘.;O_99 = 0.064089 i
—— LGBM 32 variables BDT, AS = 1024, 1000*AUC90_99 = 0.066507
LGBM 29 variables BDT, AS = 1024, 1000*AUC90_99 = 0.077921
LGBM 26 variables BDT, AS = 1015, 1000*AUC90_99 = 0.075745
LGBM 18 variables (Likelihood vars) BDT, AS = 974, 1000*AUC90_99 = 0.118270
—— LH, AS = 913, 1000*AUC90_99 = 0.495784
10_1 P . . .
The ML performance clearly improves with number of variables.
From the 18 (LLH) variables to 26 and 29 variables, performance
increases a lot... after that it only grows very slowly.
ol Q: Should we aim at 26-29 variables?

103 hﬁ =

MC

1 1 Il 1 1 Il 1 1 1
0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
Signal eff.



Where do we improve (most)?

The improvements are NOT uniform in energy and angle. We gain most in the

“crack” and forward direction.

Hadron acceptance LHValue / LGBM at 98% electron eff|C|enc¥5 0
D 2.237 3.1 3.038 3.125 5.288 6.749 5.941 24.53
N\
12.5
0‘\ 1.979 3.014 2.453 3.91 7.43 6.122 5.483 {
~
o 110.0
L | |
>
Q .
(D ‘o\ 2.175 2.575 3.895 5.725 6.278 5.041 6.471
= 7.5
<
W
> 1.617 1.698 2.07 4.191 6.053 3.057 6.934 ) 5 . O
& |
2.5
0)0\ 1.411 1.995 4.322 2.424 |
\’}9‘ 1] ”
Crack
& > < A » > & A A
o o (b»-\’ 6)»7’ \ 7 ,Lxc-b \/’VQ \,'1,?’ \ 2>
Qr Qr o' ' ' * * * '
S S Q N \\,”_9 NS N 0.0 0’?
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Electron PID feature importance

The impor tance of each PID lnput variable is show below (https:/ / github.com /slundberg / shap).

SHAP Value Ranking

p_deltaEtal

p_Rhad
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p_EptRatio

p_deltaPhiRescaled2

p_Reta
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p_dPOverP
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p_numberOflnnermostPixelHits

p_weta2

p_Eratio
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p_dO

p_dOSig

p_numberOfPixelHits
p_numberOfSCTHitg .

0.2 0.4 0.6 0.8




Electron PID feature importance

The impor tance of each PID lnput variable is show below (https:/ / github.com /slundberg / shap).

SHAP Value Ranking

p_deltaEtal

p_Rhad

p_Rphi

p_EptRatio
p_deltaPhiRescaled2
p_Reta

p_TRTPID

p_dPOverP

p_fl

p_f3 .
p_numberOflnnermostPixelHits The ML approach can easﬂy

p weta2 incorporate more input
p_Eratio variables, also those which
p_Rhadl describe environment more
p_dO
p_d0Sig
p_numberOfPixelHits

p_numberOfSCTHits i ; A ‘
- 0.0 0.2 0.4 0.6 0.8

than PID in itself (e.g. energy,
direction, pile-up, etc.).




Status of efforts - DATA



Tag & Probe

Zee candidates are

selected with
Tag&Probe (T&P). |

| Tag electron

== identification applied
ensures readout of data

no identification applied

used for training/testing




1
] —— ATLAS Likelihood (LH) 09y =1.68%
Fi(Calo+Track)pata 09> =0.752%
| — X(Calo+Track)pata a9, =0.723%
| X(Ext.Calo+Track)pata a9 = 0.634%
N ——— Fi(Aux.Calo+Track)pata a9y = 0.64%
% Lo-1] — X(Aux.Calo+Track)pats sz = 0.603% /
Q | —— X(Ext.Aux.Calo+Track)pata @92 = 0.564%
©
-4 /
o
9 | ATLAS Work in progress /
- Data test set
C
< /
o /
o IF92 =2.97 =
S 10721
(o] 4
m
1073
« 3.5
8
E 3.0 1
) 25 7
o,
E 20 7
¢ 151
2
a 1.0
E 0.5
'0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98

Electron PID on data

Signal efficiency

1.00

Applying ML PID
trained on MC to data

naturally gives lesser

results.

Also, the shown
improvement is a
lower bound, as
signal in the
background lowers

(apparent)

performance.

http://www.nbi.dk/~petersen/MastersThesis StefanHasselgren 6dec2018.pdf
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Impact in data

ML electron PID on probe side yields in data more Zee events (same background):

Counts / 0.3 GeV

200000y

1500007

100000¢

50000¢

Pt

—— No PID
—— LHLoose
—— LGBM "Loose" hadron

While the gain is modest (4.5%),
it is doubled, when also applied
to the tag side.

| Better energy reconstruction

| |can also contribute...
| |

75

85

105
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Data: Label confusion

In real data we don’t have perfect labelling. The selections for signal and

background have a few percent of label confusion each, depending on energy

and detector part hit.

[t turns out, that Random Forests (RF) perform better than Boosted Decision Trees

(BDT) given this label confusion, as one might expect.

LightGBM RF with 100 trees - AUC value

0.9966 0.9969

0.9968

0.9968 0.9969 0.9928 0.9896 0.9853

0.9904

0 1.0 5.0 10.0
Mislabeling of background [%]

25.0 0 1.0 5.0 10.0

LightGBM BDT with 100 trees - AUC value

0.9612

0.9807

0.9862

25.0

27



Electron Energy Reconstruction
- on MC



Electron ER - BDT vs. CNN

We started to work on electron energy reconstruction (ER) using scalar variables
combined with a BDT approach, just like ATLAS does.

However, we are now exploring to use a Convoluted Neural Network (CNN) for
the task, as this “naturally” fits the problem, when considering the calorimeter
cells as images.

Naturally, there are still scalar variables to add to the regression:

BDT scalar variables CNN scalar variables
® p eAccCluster ® p eta
e p fOCluster e p_deltaPhiRescaled2
e p R12 e pX_deltaPhiFromLastMeasurement
e p_etaCluster e pX_deltaPhiRescaled0
e p_cellindexCluster e pX_deltaEta2
e p etaModCalo e pX deltaEta3
e p phiModCalo ® p _charge
e p fTG3 e BC distanceFromFront
e p_dPhiTH3 e BC_filledBunches
e p pt track e p pt track
e averagelnteractionsPerCrossing e averagelnteractionsPerCrossing
® NvixReco ® NvixReco
— Blue are used by the current E calib — No ECAL variables
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Photon ER performance

The photon energy reconstruction performance is shown here (for Z>eey sample):

Z-value for trained models Benjamin Henckel

y 250007
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Photon ER performance

The photon energy reconstruction performance is shown here (for Z>eey sample):

y 250007

200007

150007

Z-value for trained models Benjamin Henckel
as 1 ATLAS
] LGBM126
1 LGBM10O
T H [ 1 LGBM50
H L [ LGBM35
Key |MAE(Z)|MSE(Z)|ICE(5)|ICE(25)HLowefp Upper5 | Median| Mean | —— | GBM15
ATLAS | 0.0501 | 0.0075 {0.0726| 0.0384 i{-0.117 | 0.122 | 0.0019 |0.0021
LGBM126| 0.0410 | 0.0071 [0.0560| 0.032Q][-0.093, 0.091 |-0.0000|0.0012
LGBM100| 0.0420 | 0.0077 |0.0571 0.0325: -0.0984 0.093 | 0.0000 |0.0014
LGBM50 | 0.0421 | 0.0073 |0.0581| 0.0328 | -0.096}5 0.095 |-0.0001|0.0011
LGBM35 | 0.0428 | 0.0069 |0.0595| 0.0332 |-0.099 || 0.097 |-0.0000{0.0011
LGBM15 | 0.0506 | 0.0095 |0.0715| 0.0383 |-0.117 D.118 |-0.0000/0.0021 M C |
| __
—0.2 —-0.1 0.0 0.1 0.2

Ereco - Etruth

E truth
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CNN setup

: Frederik Faye
e ECAL layers 0 (presampler), 1, 2 and 3 (cell values and times)
e All images are produced to be 56 X 55 (better than 7 X 11 and 56 X 11)
and are stacked to give a 56 X 55 X 4 array
e Cell values are scaled to GeV

NOTE: For now, we only consider

e Time values are divided by 50 ns barrel electrons (In| < 1.3)

ECAL O (presampler) ECAL 1 ECAL 2 ECAL 3
0.1350 .
E 10—1
0.0675 i
i m
i >
i g
i Q
S 0.0000 - : <
107 @
i =
—0.0675 -
—-0.1350 : . : 1073
—0.0875 0. 0000 0.0875 —-0.0875 0.0000 0.0875 -0.0875 0.0000 0.0875 -0.0875 0.0000 0.0875
An An An

The great thing is that for each cell we don’t just have the energy, but also the
time (rejecting out-of-time pile-up), gain, and cell noise level (gauging the
energy precision).

However, these are not same units, so combined with gate (not concatenation).
32



CNN architecture

We use a 3 x 3 convolution matrices for all layers.

Each convolution layer is followed by a batch
normalisation and activation.

For all i > 1, block begins with downsampling and
the number of feature maps is doubled.

A worry is, that the scalar variables “drown” in the
many feature map outputs. To be investigated
further.

However, we know that scalar variables improve
performance as it is!

Images containing time are treated differently...

Xscalar
(B,F)
CNN
Block 1
Conv(fp) X n,
Block 2
Downsampling
Conv(2fp) X n,
Block N
Downsampling
Conv(2Vfy) X ny
Concatenate @~ ¢———
DENSE TOP
Dense(dy)
Dense(dy)
Dense(1)
Activation
Frederik Faye
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CNN results [Foogerts aye]

[ E calib. (current) MAE IQR(Z) rMAE rIQR(Z)
LGBM(9) E calib. 1.753 0.041 1.000 1.000
14000 4 1 LGBM(12) LGBM(9) 1.726 0.040 1.016 1.014
[ CNN i LGBM(12) 1.685 0.039 1.040 1.047
L1 CNN(s) CNN 1.562 0.037 1.122 1.100
12000 4 = CNN(s,t) 1 CNN(s)  1.548 0.036 1.132 1.124
1 CNN(st) 1533 0036 1.144 1.138
8 |
L2 10000 - .
o
o
S~
> 8000 -
(e
()
>
O
0 6000 -
L
4000 -
2000 -
0 :-1 1 1 1
-0.2 -0.1 0.0
Z= (Epred — Etruth)/Etruth




CNN results [FrederisTazs]

[ E calib. (current) MAE IQR(Z) rMAE rIQR(Z)
LGBM(12) Ecalib. 1753 0.041 1.000 1.000
14000 7 1 CNN(s) LGBM(12) 1.685 0.039 1.040 1.047
< CNN(s) 1548 0036 1.132 1.124
12000 -
B 10000 -
o
Q
o
=
> 8000 -
c
)
-]
@ 6000 -
| -
L
4000 -
4
11
2000 - H
||
1|
1
O :"_I : I I T #—i:—
~0.2 ~0.1 0.0 0.1 0.2

Z= (Epred - Etruth)/Etruth




CNN results Frreaorirare]
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CNN results
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CNN results
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Electron Energy Reconstruction
- on MC... latest development!



FiLM = Feature wlse Linear Modulation

FiLM(x) = v(z) © x + 5(2).

First, each feature (or channel)
is scaled by the corresponding
Y parameter.

In a fully-connected network, In a convolutional network,
FiLM applies a different affine FiLM applies a different affine
transformation to each feature. transformation to each channel,

consistent across spatial locations.

[ '

|

[ L 1 T

|

Then, each feature (or channel)
is shifted by the corresponding
B parameter.

X
>

g

|
!

[ ) i
!

—

N
>

%

https://distill.pub/2018/feature-wise-transformations/
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Results from FiLM

[ E calib.
CNN

CNN(s S EiLm)

<-0.20 -0.15

-0.10

-0.05 0.00 0.05
Z= (Epred - Etruth)/Etruth

0.10

0.15

=>0.20
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Looking at the future:
v-reconstruction
in IceCube



Ideas for the future

The IceCube detector is a less “classic” particle physics detector. Here, 86 strings with
about 5000 Digital Optical Modules (DOMs) in total are put in the ice at the South Pole,

and used to detector neutrinos (and involuntarily cosmic muons) interact in the ice.

The detector is triggered by coincidences
of several adjacent DOMs, and then read

out.

Each DOM provides a measurement in
time and size of signal. However, there is
a significant amount of noise and also
effects such as after-pulses, which makes

the data less clean.

IceCube Lab

- - - - -
- - - - > o

Deep Core

Effel Tower|
4 324m
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Ideas for the future

The IceCube detector is a less “classic” particle physics detector. Here, 86 strings with
about 5000 Digital Optical Modules (DOMs) in total are put in the ice at the South Pole,

and used to detector neutrinos (and involuntarily cosmic muons) interact in the ice.

The detector is triggered by coincidences
of several adjacent DOMs, and then read

out.

Each DOM provides a measurement in
time and size of signal. However, there is
a significant amount of noise and also
effects such as after-pulses, which makes

the data less clean.
The bottleneck is the event reconstruction!
This is based on the minimisation of a

likelihood including ray tracing and ice

properties.

IceCube Lab

- - < - r -

- - - . —

|
|
if Deep Core

Effel Tower|
,‘! ; 324 m
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Ideas for the future

. atese et -
- - L . .

ERRER Ll LU
s
Ll L LeT mesdes T T .. .
& '.-.-...'ac.»’.e:.;-.-.: F et te o
& " 3 L
""'"‘W’""
o coeiiinines e o .
. 'YL ' T
G

Neutrinos and cosmic [EEEESIEEEEIE NI

muons interact in the

. o o
ice, and leaves signals RIS '

to be reconstructed.




Ideas for the future
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Ideas for the future
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Problem 2:

Given a list of hits, how to
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energy, type, etc.?

And... how todoitina
“reasonable” amount of

time?

Currently t(reco) = 30 min.




Ideas for the future
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A student of mine (Andreas Segaard) tried to see, if he

could get an ML algorithm to do the reconstruction.

It didn’t perform very well (yet!), but t(reco) = 0.01 sec.
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Conclusions

I think that there is a lot of prospect in Machine Learning for physics.

* New algorithms see the light of day almost daily.

* In some cases, it may simply give a more performant data analysis.

e However, in some cases, it makes all the difference.

e Particle physics data is well suited for ML as we have “accurate” simulation.

The data requires collaboration, as there are several “particle physics tricks”
needed to evaluate performance in real data.

There are many areas to try ML on:
e Transformation of simulation to match data better (challenge: extrapolation).

e Simulation using GANs and VAEs (already started in ATLAS).
* Reconstruction in the IceCube experiment

've been surprised by the speed with which students “pick up” ML, once you
give them an introduction to it. The challenge is often to find data “suitable” for
the algorithms given. We - in HEP - tend to actually have that!
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Bonus slides



Signal/background selection

e DAOD production: mixture of EGAM1, EGAM3, EGAM7, EGAMS8 and

EGAMO9 including cells and bunch crossing information
e Z — ee Tag and Probe

e Tag e Probe
e pr>245GeV ® pr>45GeV
e Tight ID ® Pass object quality cut
e Loose Isolation ° || <4.9

e Combined
® dR > 0.4 for tag and probe

® Mg > 50 GeV

® Crack veto and Central
® Pass HLT_e26_lhtight_nodO_ivarloose
® Has track particle and vertex

® Pass object quality cut
e Dijet, W= — ¢*v (£ = e, u), Z — uu samples background selection
e Missing transverse energy (MET) < 25 GeV
e pr>4.5GeV
e pass Object Quality
e Z veto: Match with any other medium electron, |Mee — Mo | < 20 GeV
e W veto: Match with MET, transverse mass < 40 GeV
o Z(7y) — ee (Drell-Yan), Z — vy, v +jet
e EGamma truth particles

e More complete documentation https://twiki.cern.ch/twiki/bin/
viewauth/AtlasProtected/EgammaMachineLearning
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Purities after T&P

The electron probe purities for both signal and background are far from ideal!

Signal sample purities

100%

[n] : 2.01-2.47 JEEREZN 83.2% RERN-V MRS WA [NV
90%

[n] : 1.52-2.01 JEZASKN 80.1% RERRISLNRCIIVALIR N R/
-80%

[n] : 1.37-1.52 EENALY 75.8% RZN SRRV MR LR
-70%

IBK:DRCYR 47.9% RABRN N 95.9% 98.4% 95.9%
60%

GIBCRRK:R 47.5% QAR N 96.0% 98.5% 96.0%
' 50%

S 7/Ge L .5 7/Ge L .5 7/Ge L .5 7/Ge L .5 7/Ge L.

-15?0 '20“30 -30~40 -40.50 35,

Background sample purities

100%

[n| : 2.01-2.47-70.0% 69.3% 83.4% :i°li 0 cHEPA/)
90%

|n] : 1.52-2.01-75.2% 77.5% 92.1% 94.3%
-80%

[n| : 1.37-1.52-66.1% 71.3% 85.2% :i°l=i/ i iR/
-70%

|| : 0.8-1.37-74.4% 80.8% [ RN/ ARLNCE NN lCAL
60%

[n] : 0.0-0.8-80.6% 83.0% RRR-F/ RRCRH R VN
‘ ' 50%

S 7/Ge L .5 7/Ge L .5 7/Ge L .5 7/Ge L .5 7/Ge L.

. 15_20 -2o~30 -30~40 : 401,50 T35,
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Background acc.

Comparison of Combination

Nicolas' MVA vs. My final test score

1t —— Likelihood value, a @ 92% : 0.40%
My Calo & Track test score, a @ 92% : 0.09%
—— My Calo & Track Fisher score, a @ 92% : 0.12%

Eff(bkg) @ 92% Eff(sig): S
ATLAS Likelihood: 0.40 % ~> Improvement by

| | ML(Calo)+ML(Trk): 0.12% - factor 3.3 (in MC)
ML(Calo+Trk): 0.09%
Note that the ML(Calo+Trk) can not be trained on real data,
as one quantity (ML(Calo) or ML(Trk)) is required in order

N to get a clean sample for the other to be trained on.
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Background acceptance

Performance of all methods

Fisher(MLTk, MLCalo) (Data trained

1004 — ATLAS Likehood (LH)
XGB(XGB(Calo)+XGB(Track)) (MC trained)
—— Fisher(XGB(Calo)+XGB(Track))
—— XGB(XGB(Calo)+XGB(Track))
XGB(Calo+Track) (MC trained)
—— Theo. comb. Calo & Track
—— Theo. comb. Calo & Track (MC corrected)
107!
102
1073

Eff(bkg) @ 92% Eff(sig):

ATLAS Likelihood: 2.2 %
ML(Calo)+ML(Trk): 0.78%

Improvement by /
factor 2.8 (in DATA);

ATLAS Likelihood (Trk + Calo)

e

Theoretical ROC(ROCTrk, ROCCalo)

LT

DATA

0.850 0.865

0.880

0.895

0.910

0.925
Signal efficiency

0.940

0.955 0.970 0.985

54




Electron PID on data

Performance
is best in the
forward region

at high energies.

However, the
later statement
might be a result
of determining
performance
with impure
data (more so at

lower energies).

Background Background Background
acceptance (a) acceptance (a) acceptance (a)

Background
acceptance (a)

Background
acceptance (a)

1014

/ 3 _Ing =483 _Ing =568 _IF92=8.22
10-24 J 4 e — ,/4 ]
10-31IFgy = 2.20 lIFs, =3.55 - - / -
]_0_4 R B S — — — —_—

1071 /

1024

1034/Fg, =2.17

10-4

10714 E E E E
10724 1 | 1 — 1
1039/F9> = 1.95 1lF9; = 3.20 1lF9; =4.08 1lF9; =4.48 1lF9> =5.80
104 +—T"—"—"7"—"——
lET/GeV :15-20, |n| : 0.8-1.37 Er/GeV :20-30, |n| : 0.8-1.37 Er/GeV : 30-40, |n| : 0.8-1.37 Er/GeV : 40-50, |n| : 0.8-1.37 Er/GeV : >50, |n| : 0.8-1.37
ATLAS Work in progress ATLAS Work in progress ATLAS Work in progress ATLAS Work in progress ATLAS Work in progress
Data test set Data test set Data test set Data test set Data test set
-1 4 4 4 4
10 = IFo2 =2.24 IFo2 =2.39 IFo2 = 3.52
1024 — E| E| E

1073 4 Ing =1.54

1074

10714
10724

1034/F9, = 1.50

Er/GeV : 20-30, |n] : 2.01-2.47

Er/GeV : 30-40, || : 2.01-2.47

Er/GeV : 40-50, |n| : 2.01-2.47

Er/GeV : >50, |n| : 2.01-2.47

lEr/GeV: 15-20, |n| : 2.01-2.47

ATLAS Work in progress
Data test set

ATLAS Work in progress
Data test set

ATLAS Work in progress
Data test set

ATLAS Work in progress
Data test set

ATLAS Work in progress
Data test set

1ET/GeV: 15-20, |n| : 1.52-2.01

Er/GeV :20-30, |n| : 1.52-2.01

Er/GeV : 30-40, |n| : 1.52-2.01

Er/GeV : 40-50, |n| : 1.52-2.01

Er/GeV : >50, |n] : 1.52-2.01

ATLAS Work in progress
Data test set

ATLAS Work in progress
Data test set

‘IF92 = 285

ATLAS Work in progress
Data test set

IF92 =3.20

ATLAS Work in progress
Data test set

ATLAS Work in progress
Data test set

_IF92 =4.15

lET/G(-.“V: 15-20, |n| : 1.37-1.52

Er/GeV :20-30, |n| : 1.37-1.52

Er/GeV : 30-40, |n| : 1.37-1.52

Er/GeV : 40-50, |n| : 1.37-1.52

Er/GeV : >50, |n| : 1.37-1.52

ATLAS Work in progress
Data tes!

ATLAS Work in progress
Data test set

ATLAS Work in progress
Data test set

ATLAS Work in progress
Data test set

ATLAS Work in progress
Data test set

‘IF92 =1.90

| ErlGeV :15-20, |n| : 0.0-0.8

Er/GeV : 20-30, |n] : 0.0-0.8

Er/GeV : 30-40, |n] : 0.0-0.8

Er/GeV : 40-50, |n] : 0.0-0.8

Er/GeV : >50, |n] : 0.0-0.8

ATLAS Work in progress
Data test set

ATLAS Work in progress
Data test set

iIF92 =1.90

ATLAS Work in progress
Data test set

IF92 = 206

ATLAS Work in progress
Data test set

ilFo; =2.24

ATLAS Work in progress
Data test set

ilFo; =3.14

-4
0.

80 0.84 0.88 0.92 0.96 1
Signal efficiency

0.80 0.84 0.88 0.92 0.96 1

Signal efficiency

0.80 0.84 0.88 0.92 0.96 1

Signal efficiency

0.80 0.84 0.88 0.92 0.96 1

Signal efficiency

0.80 0.84 0.88 0.92 0.96 1

Signal efficiency
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What is a CNN?

CNNs are a type of neural network, which works well with spatially dependent
data (typically images). CNNs use parameter/weight sharing.

Multi-layered images (e.g. RGB or ATLAS calorimeter) are handled naturally.

A CNN works by sliding (small) filter across the image, outputting the
convolution (inner product) of the filter and pixels covered.

————————————————————

—————

_____

Filter ----

——————————

——————————

_____

:----+  |Resulting feature map

Image /Calorimeter | -~~~




What is a CNN?

CNNs are a type of neural network, which works well with spatially dependent
data (typically images). CNNs use parameter/weight sharing.

Multi-layered images (e.g. RGB or ATLAS calorimeter) are handled naturally.

A CNN works by sliding (small) filter across the image, outputting the
convolution (inner product) of the filter and pixels covered.
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Tag & Probe

Zee candidates are

selected with
Tag&Probe (T&P).
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The Idea: Exténded Tag&Probe

1) Zee candidates

are selected with

Tagé&Probe (T&P).
Purity: 30-90%

Probe electron | Q.
[

' tﬁ 9
Calo [ Track [
\
2) The probe electron is “divided”
into three independent (?) parts: .

A =

o

- o
e
W & i

Track, Calo, Isolation



The Idea: Extended Tag&Probe

1) Zee candidates

are selected with
Tagé&Probe (T&P).
Purity: 30-90%

Probe eleCtrOn

3) When considering one
1 ’ g
2) The probe electron is “divided” part of the probe electron,

into three independent (?) parts: the other two can be used

Track, Calo, Isolation to further purify probes:

Purity: 99-99.9%



