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Using Angular Variables 
to disentangle 

H → ZZ* → eeee?

Outline

3

Outline of talk:
• In the beginning: b-jet tagging in ALEPH
• HEP data and why it is exciting for Machine Learning (ML)
• Going large scale: Electrons and photons in ATLAS

–  Data samples, variables, and selections
–  Electron PID and Energy Reconstruction (ER)
–  Discussion of performance measures (loss functions)

• Looking at the future: ν-reconstruction in IceCube

Purpose of talk:
• Show Machine Learning cases in science.
• Present HEP data, and why it is great (but also cumbersome!)
• Open up for possible inspiration/collaboration

In the following, all numbers and plots are “Not Even Preliminary”, and should 
in not be used elsewhere.
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We search for MANY different things, typically rare (1:109) with complex decays.

Candidate:
Higgs ➛ ZZ* ➛ 4 leptons (e or μ)
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To make sure that we understand our experiment we use simulation extensively:
• Detector optimisation (before experiment)
• Reconstruction design/optimisation (before/during experiment)
• Selection optimisation (during experiment)
• Signal efficiency estimates (during experiment)

The simulation is done in three steps: Event generation, Simulation, and Digitisation.

The total CPU time needed for one event is about 20-30 minutes, and we have now 
simulated about a billion events (using 0.5M cores).

The simulation is done from first principles, and there are therefore (smaller) 
differences between simulation and data (maybe a point of interest to fix?).
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Electrons and photons play a central role in the ATLAS physics programme, in 
particular in Higgs physics, where they dominate the two golden channels.

Current methods use likelihood approach (PID) and simple ML (Energy).

Given the cost of running, we would be satisfied, if we could add 10% to each of 
these in terms of statistics, knowing this would also benefit many other analysis.



In the beginning:
b-jet tagging

in ALEPH

Event as seen by the TRT detector. The occupancy is near 100%, rendering reconstructing void!
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ALEPH b-jet tagging
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25 years ago, particle physics was actually at the forefront of using Machine
Learning. We had large computers and much data fit for ML usage.

At the time, LEP was searching for the
Higgs boson at lower masses, where
its decay was almost always to b-quarks.

For this reason, many resources were
used to get the best possible b-jet
tagging in place.
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ALEPH b-jet tagging
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25 years ago, particle physics was actually at the forefront of using Machine
Learning. We had large computers and much data fit for ML usage.

At the time, LEP was searching for the
Higgs boson at lower masses, where
its decay was almost always to b-quarks.

For this reason, many resources were
used to get the best possible b-jet
tagging in place.

Both lifetime (displaced vertices),
jet shape, and lepton pT was used,
but non of these by themselves
provide a good way to select b-jets. 

From Ph.D. of Steven Armstrong (1999)

Impact parameter significance:
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ALEPH b-jet tagging
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However, using one of the very first ML algorithms (JetNet 3.4), six variables
were put together in a neural network with two hidden layers each with
10 neurons:
• Light quark (uds) jet probability from track impact parameter significance.
• Difference in Chi2 from search for secondary vertices in jet.
• Transverse momentum of (possible) electron/muon in jet.
• Boosted sphericity of jet.
• Energy flow multiplicity (scaled by jet energy).
• Sum of transverse momenta (with respect to the jet axis) squared.

The neural network was trained on 400.000 simulated
events, and though I haven’t been able to find the exact
time used for this training, colleagues have told me
“many hours, sometime days”.

Interestingly, my students now code the setup in about
an hour, and get results in minutes.
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The result of these labours was a very nice b-jet tagging variable, which allowed
ALEPH to get the most out of their data.
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ALEPH b-jet tagging
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A more “modern” plot could look like this: Benjamin Henckel



Going large scale:
e/γ PID & ER

in ATLAS

Event as seen by the TRT detector. The occupancy is near 100%, rendering reconstructing void!
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Currently in ATLAS, electrons and photons are identified using a likelihood approach:

The likelihood is composed of 22 variables,
for which 1D histograms are used to
compute the likelihood value.

To minimise correlations, the likelihood is
divided into regions of ET and η.

This makes for a very transparent approach,
which at the same time performs well.

The question is, if there is more information
to be gained, and thus a more powerful PID
to be gotten.

           Enter Machine Learning (ML)…

9 calorimeter variables

8 tracking variables

4 matching variables

1 conversion variable (for photons)



Electron PID - on MC

Event as seen by the TRT detector. The occupancy is near 100%, rendering reconstructing void!
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Reweighing
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The background is reweighed to look like signal in ET, η and ⟨μ⟩

using GBReweighter (https://arogozhnikov.github.io/hep_ml/reweight.html)

This is a general issue to be solved in physics involving simulations.
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Electron PID performance
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The electron PID performance is generally much improved with ML: 

7 GeV < ET < 10 GeV, �0.6 < ⌘ < �0.1

7 GeV < ET < 10 GeV, �0.6 < ⌘ < �0.1 7 GeV < ET < 10 GeV, �0.6 < ⌘ < �0.1

Lukas Ehrke
We train the Machine Learning (ML)
algorithm (LightGBM) with a mix of 
backgrounds, and then see how well it 
performs on each.
We compare to the current ATLAS LH,
not to boast our results, but as a solid 
reference, which helps us getting the 
most performant & generel results.
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Electron PID performance
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The electron PID performance is generally much improved with ML: 

MC

The ML performance clearly improves with number of variables.
From the 18 (LLH) variables to 26 and 29 variables, performance
increases a lot… after that it only grows very slowly.

Q: Should we aim at 26-29 variables?
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Where do we improve (most)?
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The improvements are NOT uniform in energy and angle. We gain most in the 
“crack” and forward direction.

“Crack”
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The importance of each PID input variable is show below (https://github.com/slundberg/shap).
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Electron PID feature importance
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The importance of each PID input variable is show below (https://github.com/slundberg/shap).

The ML approach can easily 
incorporate more input 
variables, also those which 
describe environment more 
than PID in itself (e.g. energy, 
direction, pile-up, etc.).



Status of efforts - DATA

Event as seen by the TRT detector. The occupancy is near 100%, rendering reconstructing void!
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Tag & Probe

Tag electron
identification applied

 ensures readout of data

Probe electron
no identification applied
used for training/testing

24

Zee candidates are 
selected with 
Tag&Probe (T&P).

 Purity: 45-95%
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Electron PID on data

25http://www.nbi.dk/~petersen/MastersThesis_StefanHasselgren_6dec2018.pdf

Stefan Hasselgren 
Master thesis finished (link below) 
(defend end of December 2018)

Applying ML PID 
trained on MC to data 
naturally gives lesser 
results.

Also, the shown 
improvement is a 
lower bound, as 
signal in the 
background lowers 
(apparent) 
performance.

http://www.nbi.dk/~petersen/MastersThesis_StefanHasselgren_6dec2018.pdf
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ML electron PID on probe side yields in data more Zee events (same background):

While the gain is modest (4.5%), 
it is doubled, when also applied 
to the tag side.
Better energy reconstruction 
can also contribute…
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In real data we don’t have perfect labelling. The selections for signal and 
background have a few percent of label confusion each, depending on energy 
and detector part hit.
It turns out, that Random Forests (RF) perform better than Boosted Decision Trees 
(BDT) given this label confusion, as one might expect. 

Malte Algren 



Electron Energy Reconstruction
 - on MC

Event as seen by the TRT detector. The occupancy is near 100%, rendering reconstructing void!
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Electron ER - BDT vs. CNN
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We started to work on electron energy reconstruction (ER) using scalar variables 
combined with a BDT approach, just like ATLAS does.
However, we are now exploring to use a Convoluted Neural Network (CNN) for 
the task, as this “naturally” fits the problem, when considering the calorimeter 
cells as images.
Naturally, there are still scalar variables to add to the regression:



Using Angular Variables 
to disentangle 

H → ZZ* → eeee?

Photon ER performance
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The photon energy reconstruction performance is shown here (for Z➛eeγ sample):

MC

Benjamin Henckel
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Photon ER performance
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The photon energy reconstruction performance is shown here (for Z➛eeγ sample):

MC

Benjamin Henckel
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CNN setup
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Frederik Faye

The great thing is that for each cell we don’t just have the energy, but also the 
time (rejecting out-of-time pile-up), gain, and cell noise level (gauging the 
energy precision).
However, these are not same units, so combined with gate (not concatenation).

NOTE: For now, we only consider
barrel electrons (|η| < 1.3)
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CNN architecture
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We use a 3 × 3 convolution matrices for all layers.

Each convolution layer is followed by a batch 
normalisation and activation.

For all i > 1, block begins with downsampling and 
the number of feature maps is doubled.

A worry is, that the scalar variables “drown” in the 
many feature map outputs. To be investigated 
further.
However, we know that scalar variables improve 
performance as it is!

Images containing time are treated differently…

Frederik Faye
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Frederik Faye

MAE IQR(Z) rMAE rIQR(Z)
E calib. 1.753 0.041 1.000 1.000
LGBM(9) 1.726 0.040 1.016 1.014
LGBM(12) 1.685 0.039 1.040 1.047
CNN 1.562 0.037 1.122 1.100
CNN(s) 1.548 0.036 1.132 1.124
CNN(s,t) 1.533 0.036 1.144 1.138
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CNN results

35

Frederik Faye

MAE IQR(Z) rMAE rIQR(Z)
E calib. 1.753 0.041 1.000 1.000
LGBM(12) 1.685 0.039 1.040 1.047
CNN(s) 1.548 0.036 1.132 1.124
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Frederik Faye
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Frederik Faye
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CNN results
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Frederik Faye



Electron Energy Reconstruction
 - on MC… latest development!

Event as seen by the TRT detector. The occupancy is near 100%, rendering reconstructing void!
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FiLM = Feature wIse Linear Modulation
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Frederik Faye

https://distill.pub/2018/feature-wise-transformations/
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Results from FiLM
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Frederik Faye



Looking at the future:
ν-reconstruction

in IceCube

Event as seen by the TRT detector. The occupancy is near 100%, rendering reconstructing void!
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Ideas for the future
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The IceCube detector is a less “classic” particle physics detector. Here, 86 strings with 
about 5000 Digital Optical Modules (DOMs) in total are put in the ice at the South Pole,
and used to detector neutrinos (and involuntarily cosmic muons) interact in the ice.

The detector is triggered by coincidences
of several adjacent DOMs, and then read
out.

Each DOM provides a measurement in
time and size of signal. However, there is
a significant amount of noise and also
effects such as after-pulses, which makes
the data less clean.
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Ideas for the future
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The IceCube detector is a less “classic” particle physics detector. Here, 86 strings with 
about 5000 Digital Optical Modules (DOMs) in total are put in the ice at the South Pole,
and used to detector neutrinos (and involuntarily cosmic muons) interact in the ice.

The detector is triggered by coincidences
of several adjacent DOMs, and then read
out.

Each DOM provides a measurement in
time and size of signal. However, there is
a significant amount of noise and also
effects such as after-pulses, which makes
the data less clean.

The bottleneck is the event reconstruction!

This is based on the minimisation of a
likelihood including ray tracing and ice
properties.
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Neutrinos and cosmic 
muons interact in the 
ice, and leaves signals 
to be reconstructed.

Ideas for the future
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Neutrinos and cosmic 
muons interact in the 
ice, and leaves signals 
to be reconstructed.

Ideas for the future

Problem 1:
Which hits belong to 
the event and which 
are noise?
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Neutrinos and cosmic 
muons interact in the 
ice, and leaves signals 
to be reconstructed.

Ideas for the future

Problem 1:
Which hits belong to 
the event and which 
are noise?

Problem 2:
Given a list of hits, how to 
determine the direction, 
energy, type, etc.?
And… how to do it in a 
“reasonable” amount of 
time?
Currently t(reco) = 30 min.
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Neutrinos and cosmic 
muons interact in the 
ice, and leaves signals 
to be reconstructed.

Ideas for the future

Problem 1:
Which hits belong to 
the event and which 
are noise?

Problem 2:
Given a list of hits, how to 
determine the direction, 
energy, type, etc.?
And… how to do it in a 
“reasonable” amount of 
time?
Currently t(reco) = 30 min.

A student of mine (Andreas Søgaard) tried to see, if he 
could get an ML algorithm to do the reconstruction.
It didn’t perform very well (yet!), but t(reco) = 0.01 sec.
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I think that there is a lot of prospect in Machine Learning for physics.
• New algorithms see the light of day almost daily.
• In some cases, it may simply give a more performant data analysis.
• However, in some cases, it makes all the difference.
• Particle physics data is well suited for ML as we have “accurate” simulation.

The data requires collaboration, as there are several “particle physics tricks” 
needed to evaluate performance in real data.

There are many areas to try ML on:
•  Transformation of simulation to match data better (challenge: extrapolation).
•  Simulation using GANs and VAEs (already started in ATLAS).
•  Reconstruction in the IceCube experiment

I’ve been surprised by the speed with which students “pick up” ML, once you 
give them an introduction to it. The challenge is often to find data “suitable” for 
the algorithms given. We - in HEP - tend to actually have that!



Bonus slides

Event as seen by the TRT detector. The occupancy is near 100%, rendering reconstructing void!
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Purities after T&P
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The electron probe purities for both signal and background are far from ideal!
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Eff(bkg) @ 92% Eff(sig):
ATLAS Likelihood: 0.40 %
ML(Calo)+ML(Trk): 0.12%
ML(Calo+Trk): 0.09%
Note that the ML(Calo+Trk) can not be trained on real data,
as one quantity (ML(Calo) or ML(Trk)) is required in order
to get a clean sample for the other to be trained on.

Improvement by
factor 3.3 (in MC)

MC
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ATLAS Likelihood (Trk + Calo)

ML(MLTrk, MLCalo) (MC trained)
Fisher(MLTrk, MLCalo) (Data trained)

ML(MLTrk, MLCalo) (Data trained)

DATA

ML(Trk, Calo) (MC trained)

Theoretical Corrected ROC(ROCTrk, ROCCalo)

Theoretical ROC(ROCTrk, ROCCalo)

Eff(bkg) @ 92% Eff(sig):
ATLAS Likelihood: 2.2 %
ML(Calo)+ML(Trk): 0.78%

Improvement by
factor 2.8 (in DATA)
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Electron PID on data
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Performance
is best in the
forward region 
at high energies.

However, the 
later statement 
might be a result 
of determining 
performance 
with impure 
data (more so at 
lower energies).
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CNNs are a type of neural network, which works well with spatially dependent 
data (typically images). CNNs use parameter/weight sharing.

Multi-layered images (e.g. RGB or ATLAS calorimeter) are handled naturally.

A CNN works by sliding (small) filter across the image, outputting the 
convolution (inner product) of the filter and pixels covered.

Image/Calorimeter

Resulting feature map

Filter
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CNNs are a type of neural network, which works well with spatially dependent 
data (typically images). CNNs use parameter/weight sharing.

Multi-layered images (e.g. RGB or ATLAS calorimeter) are handled naturally.

A CNN works by sliding (small) filter across the image, outputting the 
convolution (inner product) of the filter and pixels covered.

Image/Calorimeter

Resulting feature map

Filter
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Tag & Probe

Tag electron

Probe electron
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Zee candidates are 
selected with 
Tag&Probe (T&P).

 Purity: 30-90%
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The Idea: Extended Tag&Probe
1) Zee candidates 
are selected with 
Tag&Probe (T&P).

 Purity: 30-90%

Tag electron

Probe electron

2) The probe electron is “divided” 
into three independent (?) parts:
Track, Calo, Isolation

TrackCalo
Isolation

59
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The Idea: Extended Tag&Probe
1) Zee candidates 
are selected with 
Tag&Probe (T&P).

 Purity: 30-90%

Tag electron

Probe electron

2) The probe electron is “divided” 
into three independent (?) parts:
Track, Calo, Isolation

TrackCalo
Isolation

3) When considering one 
part of the probe electron, 
the other two can be used 
to further purify probes:

Purity: 99-99.9%
60


