
Susanne Claus
              Department of Computer Science, University of Copenhagen, Denmark.  

Cut Finite Element Methods for 
Contact Problems

AI Seminar Series, Copenhagen, Jan 2019



Geometry Discretisation in Finite Element Methods

Classical FEM CutFEM

Geometry is meshed Geometry is embedded in 
fixed background grid and 

described by a function (e.g. 
level set function)



⌦⌦

�

Consider the following diffusion partial 
differential equation (PDE)Find u 2 C

2(⌦), such that

��u = f in ⌦

u = 0 on �

with f 2 C
0(⌦)

⌦⌦

�

Finite Element Methods

error T

u 2 V

Z

⌦
ru ·rvdx =

Z

⌦
fvdx 8v 2 V

Find such that  



Convergence with mesh refinement

The error decreases with mesh refinement. However, how fast the error decreases with 
mesh refinement (convergence order) depends on multiple factors. 



Convergence strongly depends on 

Accuracy

• Numerical error:  error from 
piecewise polynomial approximation 
of the solution and of the geometry. 

Stability

• Instabilities frequently occur in 
simulations as numerical errors 
can grow in the solution process. 
Numerical error growth needs to 
be controlled and stabilised 
carefully. Too much stabilisation 
leads to inaccuracies.

• Mesh Quality: The quality and size of 
the mesh has a significant impact on 
the accuracy of the solution

Good Element Bad Element

Convergence = Accuracy + Stability



Difficulty of maintaining a high quality mesh

Advantages of Mesh Independent Geometry Descriptions
1.reduces the computational cost for preprocessing or transformation of acquired 

geometry descriptions  
2. efficient and robust for problems involving evolving geometries undergoing large 

deformations 



Important aspects of implicit geometry/cut finite element methods

Geometry Algorithms 
Discretisation of the geometry based on implicit interface description 

Accuracy and Stabilisation 
Construction of stable and accurate finite element methods independent of 
how the interface intersects the mesh.  

Implementational Aspects of Unfitted FEM

1 Description of domain boundary location
independent of background mesh.

Level-set method.

2 Evaluation of integrals over arbitrarily
shaped elements.

Sub-triangulation.

3 Element matrix assembly involving
contributions from element parts.

Generated tabulate tensor function which
takes arbitrary quadrature points and
weights.
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Major Challenges

1 Technique to enforce boundary conditions inside
elements is required.

Nitsche’s method.

2 Stabilisation techniques have to be employed in the
boundary zone to make the scheme stable
independent of how the interface cuts the mesh.

Penalty terms in the boundary region.

3 The implementation of algorithms for the
evaluation of integrals over arbitrarily shaped
elements in the boundary region is required.

Intregation over sub-triangulation.
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Major Challenges

1 Technique to enforce boundary conditions inside
elements is required.

Nitsche’s method.

2 Stabilisation techniques have to be employed in the
boundary zone to make the scheme stable
independent of how the interface cuts the mesh.

Penalty terms in the boundary region.

3 To represent jumps and kinks in the solution across
material interfaces inside elements, cells have to be
enriched (XFEM).

Double intersected cells.

4 The implementation of algorithms for the
evaluation of integrals over arbitrarily shaped
elements in the boundary region is required.

Intregation over sub-triangulation.
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FEniCS

Open Source Finite Element Library for the Automated Solution of PDEs 

 high level mathematical input language  
 generates efficient C++ code from these mathematical inputs 
 supports a wide range of different finite element types 
 supports simulations in 2D and 3D 
 fully parallelised 
 active world wide developer community, e.g. Simula Research Laboratory, 
University of Cambridge, University of Chicago, University of Texas at Austin, KTH 
Royal Institute of Technology, Chalmers University of Technology. 

FEniCS is automated FEM

• Automated generation of basis functions

• Automated evaluation of variational forms

• Automated finite element assembly

• Automated adaptive error control
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http://fenicsproject.org

http://fenicsproject.org


FEniCS Example: Poisson Equation
Unfitted Nitsche method (weak imposition of bcs)

⌦⌦

�

Consider the elliptic problem

��u = f in ⌦,
u = 0 on �.

Vh: FE space of continuous piecewise linear functions defined on a
triangulation Th = {T} that does not satisfy boundary conditions.
Find uh 2 Vh such that for all vh 2 Vh

Z

⌦

ruh ·rvh dx +

Z

�

�(ruh · nvh| {z }
consistency

�rvh · nuh| {z }
symmetry

+
�

h
uhvh

| {z }
coercivity

) ds =

Z

⌦

fvh dx

stability is obtained for � large enough using a inverse inequality.

Z

T\�

ruh · nuh dx  ✏kruhk2T\⌦ +
C

2

T

h✏
kuhk2T\�.

CT can be computed by solving an eigenvalue problem.

Consider the elliptic problem
from dolfin import * 

# Create mesh and define function space 
mesh = UnitSquareMesh(32, 32) 
V = FunctionSpace(mesh, "CG", 1) 

# Define boundary condition 
bc = DirichletBC(V, 0.0, DomainBoundary()) 

# Define variational problem 
u = TrialFunction(V) 
v = TestFunction(V) 
f = Expression(“x[0]*x[1]”) 

a = inner(grad(u), grad(v))*dx 
L = f*v*dx 

# Compute solution 
u = Function(V) 
solve(a == L, u, bc) 

u 2 V

Z

⌦
ru ·rvdx =

Z

⌦
fvdx 8v 2 V

Find such that  



FEniCS: Under The Hood 

Input: File in Python 
and Unified From 

Language

a=inner(grad(u), grad(v))*dx

a(u, v) =

Z
rurv dx

Form a 

Cell integral

inner

grad grad 

u v 

Unified Form Language (UFL)  
Interprets expressions close to  

mathematical notation



LibCutFEM

FEniCS: Under The Hood 

Input: File in Python 
and Unified From 

Language

a=inner(grad(u), grad(v))*dx

a(u, v) =

Z
rurv dx

Unified Form Language (UFL)  
Interprets expressions close to  

mathematical notation

FEniCS Form Compiler (FFC) 
Generates Header file with information about  

Elemental matrices (form)  
Degrees of Freedom Map (element)

Poisson.h
DOLFIN 

(Mesh, Communicator and Assembler)

Form a 

Cell integral

inner

grad grad 

u v 

/// Evaluate basis function i at given 
point x in cell 
_evaluate_basis(std::size_t i, double* 
values, const double* x, const double* 
coordinate_dofs) 

 /// Tabulate the tensor for the 
contribution from a local cell 
virtual void tabulate_tensor(double*  A, 
const double * const *  w, const double*  
coordinate_dofs)



Geometry Algorithm

Implementational Aspects of Unfitted FEM

1 Description of domain boundary location
independent of background mesh.

Level-set method.

2 Evaluation of integrals over arbitrarily
shaped elements.

Sub-triangulation.

3 Element matrix assembly involving
contributions from element parts.

Generated tabulate tensor function which
takes arbitrary quadrature points and
weights.
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Level Set Function

Signed Distance Function

Finite Element Approximation Mesh/Levelset  
intersection for integration

Implementational Aspects of Unfitted FEM

1 Description of domain boundary location
independent of background mesh.

Level-set method.

2 Evaluation of integrals over arbitrarily
shaped elements.

Sub-triangulation.

3 Element matrix assembly involving
contributions from element parts.

Generated tabulate tensor function which
takes arbitrary quadrature points and
weights.
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Fictitious Domain Poisson ProblemGhost Penalty

⌦⇤

⌦

⌦

� F�⇤

Solution: add stabilizing term acting on the solution in
the interface zone, also outside the physical domain

kvhk2⌦⇤ ⇠ kvhk2⌦ + jh(vh, vh)

GHOST PENALTY

j(uh, vh) = �1
X

F2F�⇤

hF ([[@nuh]], [[@nvh]])F

Regardless of how the boundary cuts the mesh �1 large
enough ensures:

coercivity for a moderate penalty parameter;

uniformly bounded condition number.

Find               such that for all  uh 2 Vh vh 2 Vh

a(uh, vh) =

Z

⌦
ruh ·rvh dx+

Z

�
(�ruh · nvh| {z }

consistency

�rvh · nuh| {z }
symmetry

+
�

h
uhvh

| {z }
coercivity

) ds

L(vh) =

Z

⌦
f vh dx+

Z

�
(�grvh · n+

�

h
g vh) ds

j(uh, vh) = �1
X

F2F�⇤

hF ([[@nuh]], [[@nvh]])F

A(uh, vh) = a(uh, vh) + j(uh, vh) = L(vh)



Poisson with contrast in diffusivities
Poisson Problem with Contrast in Di↵usivities

�r · (↵ru) = f in ⌦1 [ ⌦2,
u = 0 on @⌦,

[[u]] = 0 on �,
[[�↵irui · n]] = 0 on �.

Choose ↵1 = 1,↵2 = 10, f1 = f2 = 1.

CutFEM Standard FEM

Poisson Problem with Contrast in Di↵usivities

�r · (↵ru) = f in ⌦1 [ ⌦2,
u = 0 on @⌦,

[[u]] = 0 on �,
[[�↵irui · n]] = 0 on �.

Choose ↵1 = 1,↵2 = 10, f1 = f2 = 1.

CutFEM Standard FEM

Poisson Problem with Contrast in Di↵usivities

�r · (↵ru) = f in ⌦1 [ ⌦2,
u = 0 on @⌦,

[[u]] = 0 on �,
[[�↵irui · n]] = 0 on �.

Choose ↵1 = 1,↵2 = 10, f1 = f2 = 1.

CutFEM Standard FEM

Poisson Problem with Contrast in Di↵usivities

�r · (↵ru) = f in ⌦1 [ ⌦2,
u = 0 on @⌦,

[[u]] = 0 on �,
[[�↵irui · n]] = 0 on �.

Choose ↵1 = 1,↵2 = 10, f1 = f2 = 1.

CutFEM Standard FEM

FEM Space Enrichment (XFEM)
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Limitations with single level set function

Implementational Aspects of Unfitted FEM

1 Description of domain boundary location
independent of background mesh.

Level-set method.

2 Evaluation of integrals over arbitrarily
shaped elements.

Sub-triangulation.

3 Element matrix assembly involving
contributions from element parts.

Generated tabulate tensor function which
takes arbitrary quadrature points and
weights.
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Partitions the domain into one inside and one outside domain (max. 2 different 
materials) Poisson Problem on Multiple Domains

⌦1
↵1

⌦2
↵2

�

@⌦

Consider the elliptic problem

�r · (↵ru) = f in ⌦1 [ ⌦2,
u = 0 on @⌦,

[[u]] = 0 on �,
[[�↵irui · n]] = 0 on �.

Find u = (u1, u2) 2 Vh := V
h
1 ⇥ V

h
2 such that for all v = (v1, v2) 2 Vh

P
i (↵irui ,rvi )⌦i � ( [[u]] , h↵@nvi )� � ( h↵@nui , [[v ]] )� + ( �h�1[[U]] , [[v ]] )�

=
P

i (f , vh)⌦i

Jump: [[u]] := u1|� � u2|�,
Weighted average: h↵@nvi := (↵1w1@nv1 + ↵2w2@nv2) |�, w1 + w2 = 1

Zero level set surface contour is a closed surface, i.e it is not possible to describe 
geometries with open boundaries such as cracks 
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Use multiple level set functions for complex geometries

N-1 level set functions can described N different subdomains
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Level Set Mesh Intersection
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Enrichment for jump and kink representation

⌦1

⌦2 ⌦3

K1
K2

K3

T1
T2

T1

T2 T1
T2

Claus, S., and P. Kerfriden. "A stable and optimally convergent LaTIn‐CutFEM algorithm for multiple unilateral contact problems." IJNME 113.6 (2018): 938-966.



Triple Poisson Problem



Contact Problems



4.3 Two inclusions

In our next example, we consider two intersecting inclusions in a rectangular domain ⌦ = [�1.2, 1.2]⇥
[�1.2, 1.2], which is the example referenced throughout this article. The domains are described by the
level set functions

�1(x, y) =
q
(x � x

1
M )2 + y2 � r (61)

�2(x, y) =
q
(x � x

2
M )2 + y2 � r (62)

where r = 0.5, x
1
M = �0.25 and x

2
M = 0.25. The resulting geometry has two triple junctions which

will yield high stress concentrations at these points. We apply a vertical displacement of �1 at the top
boundary of the rectangular domain, a zero vertical displacement at the bottom boundary and zero
Neumann boundary condition everywhere (see Figure 15a). Figure 18 shows the vertical displacement,
the shear stress �xy and the normal stress �yy for the two inclusion problem with no contrast in E1

and E2, E3 on the left and with a contrast of E1 = 1 and E2 = E3 = 10 on the right. In the case
of sti↵er inclusions than the matrix material, the inclusions deviate only slightly from their circular
shape while in the case of no contrast the inclusions undergo a much stronger deformation.

We choose a mesh configuration as displayed in Figure 15b and hierarchically refine the mesh
as described in the previous examples. We compare our coarse numerical solution with the finest
numerical solution (h = 0.008) at LaTin iteration 200. The H1 and energy norm errors with mesh
refinement are shown in Figure 16 for a Young’s modulus of E1 = E2 = E3 = 1 in each domain and
in Figure ??or a contrast of the Young’s modulus of E2 = E3 = 10 for the inclusions to E1 = 1 in the
background domain. In both cases, with and without contrast in the Young’s modulus between the
inclusions and the background domain, we obtain convergence rates of first order which is optimal for
our strategy, which relies on the P1 finite element method.

⌦3

⌦1

⌦2

�1,2 �1,3

�2,3

uy = �1, � · n = 0

uy = 0, � · n = 0

�
·n

=
0

�
·n

=
0

(a) Schematics. (b) Coarsest mesh h = 0.26.

Figure 15: Schematics of two inclusions with boundary conditions and piecewise linear approximation
of the geometry in coarsest mesh used.
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u = 0

u = (0,�1)

Unilateral contact problem for linear isotropic elasticity

Bulk Problem

For all ⌦i , find the displacement fields ui : ⌦i ! R, such that

�r · ���(ui ) = f in ⌦i

���(ui ) = �i tr(✏✏✏(ui )) III + 2µi ✏✏✏(u
i ) in ⌦i

ui = g on @⌦D , ���(ui ) · n = FN on @⌦N

Here, ✏✏✏(u) = 1
2

�
ru+ruT

�
is the strain tensor, f is the body force, FN is the

surface load, g the Dirichlet boundary condition, �i and µi are the two Lamé
coe�cients (E i is the Young’s modulus, ⌫ = 0.3 is the Poisson’s ratio)

µi =
E

i

2(1 + ⌫)
, �i =

E
i⌫

(1 + ⌫)(1� 2⌫)
.

Contact Problem in linear Elasticity



Unilateral contact for isotropic linear elasticity

Contact Conditions

For any displacement field ui , we decompose the surface traction

Fi
= ���(ui ) · ni,j on the interface �

i,j
into its normal and tangential components

Fi
= Fn

i
+ Ft

i .

Then, the conditions of contact with Coulomb friction reads

�
uj � ui

�
· ni,j � 0 ,

Fi · ni,j  0 ,
�
(uj � ui ) · ni,j

�
·
�
Fi · ni,j

�
= 0 ,

kFt
ik  c Fi · ni,j if kĝi

tk2 = 0

Ft
i
= �c Fi · ni,j ĝi

t

kĝi
tk2

if kĝi
tk2 > 0

Here, ni,j is the normal pointing from ⌦i to ⌦j , c is the Coulomb friction

coe�cient, and ĝi
t := (I� ni,j ⌦ ni,j) · (u̇j � u̇i ) is the relative tangential velocity
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LaTIn Algorithm

Linear Elasticity 
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Figure 7: Schematic of LaTIn-CutFEM interface/bulk and interface/interface coupling.

Compatibility between interface and bulk For all interfaces �i,j
h , (i, j) 2 I�, we couple

the interface and bulk quantities through approximate compatibility conditions
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(36)

These are standard conditions whereby the kinematic continuity is enforced exactly, whilst
the continuity of dual quantities is only enforced on average, i.e. in a finite element sense.
When solving our problem using the LaTIn algorithm, these two conditions will be introduced
in (29) to yield our working expression of the linear stage.

Compatibility between interface and heart We project the heart quantities onto the
continuous piecewise linear approximation space V i,j

h (28) for each �i,j
h using a stabilised L
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These are standard conditions whereby the kinematic continuity is enforced exactly, whilst
the continuity of dual quantities is only enforced on average, i.e. in a finite element sense.
When solving our problem using the LaTIn algorithm, these two conditions will be introduced
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Fi + k�wi = F̂i + k�ŵi

F̂i � k+ŵi = Fi � k+wi

where F̂i and ŵi satisfy contact



LaTIn Algorithm: Stability
Applied		&	Computational	

Mechanics	GroupStability	2:	Hybrid-mixed	FE	spaces

P1-P0	scheme	is	unstable

h H1-error E-error

6.0·10�2 7.5087·10�2 5.2406·10�2

3.0·10�2 3.9379·10�2 2.8651·10�2

1.5·10�2 2.0446·10�2 1.4827·10�2

7.5·10�3 9.6445·10�3 7.3295·10�3

(a) Two quadrature points.

h H1-error E-error

6.0·10�2 7.5106·10�2 5.2414·10�2

3.0·10�2 3.9379·10�2 2.8651·10�2

1.5·10�2 2.0446·10�2 1.4827·10�2

7.5·10�3 9.6444·10�3 7.3294·10�3

(b) Four quadrature points.

Table 1: H1 and energy norm error values for two and four quadrature points per interface
segment of elliptical inclusion problem.

(a) P1/P0 (b) P1/P0 (c) P1/P0

(d) P1/P1 (e) P1/P1 (f) P1/P1

Figure 15: Comparison of current stable P1/P1 discretisation versus unstable P1/P0 discreti-
sation for it= {5, 27, 210} LaTIn iterations.
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(a) Horizontal displacement ux. (b) Vertical displacement uy.

(c) Stress component �xx. (d) Stress component �xy.

(e) Stress component �yy.

Figure 13: Displacement and stress components of elliptical inclusion for the finest mesh.
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where r = 0.654545, a = 1, b = 0.5. We apply a displacement of u =
�

0
�1

�
on the top of the

outer domain, a zero displacement at the bottom and zero Neumann conditions at the side of
the domain (see Figure 12a). We choose E

1 = E
2 = 1.0, k

+ = k
� = 1.0, �g = 0.1, �⇧ = 0.1

and ↵ = 10. The elliptical inclusion and the rectangular domain interact through unilateral
contact interface �C . Figure 13 shows the displacement and stress components for a fine mesh
with h = 0.00375 after 200 LaTIn iterations (the LaTIn algorithm has reached a converged
solution state, as shown later on). We observe that the inclusion and the background block
material are not in contact on the left and right of the ellipse and are in contact on the top.
There are stress concentrations where the contact boundary changes from “in contact” to
“not in contact”. We utilise this fine mesh solution as a numerical reference to investigate the
convergence of our LaTin-CutFEM algorithm with mesh refinement and with the number of
LaTin iterations.
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(a) Schematic and boundary conditions. (b) Coarsest Mesh.

(c) First hierarchical refinement. (d) Finest mesh.

Figure 12: Schematic of elliptical inclusion with boundary conditions and regular background
mesh refinement strategy.
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These are standard conditions whereby the kinematic continuity is enforced exactly, whilst
the continuity of dual quantities is only enforced on average, i.e. in a finite element sense.
When solving our problem using the LaTIn algorithm, these two conditions will be introduced
in (29) to yield our working expression of the linear stage.

Compatibility between interface and heart We project the heart quantities onto the
continuous piecewise linear approximation space V i,j

h (28) for each �i,j
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(e) Stress component �yy.

Figure 13: Displacement and stress components of elliptical inclusion for the finest mesh.
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where r = 0.654545, a = 1, b = 0.5. We apply a displacement of u =
�

0
�1

�
on the top of the

outer domain, a zero displacement at the bottom and zero Neumann conditions at the side of
the domain (see Figure 12a). We choose E

1 = E
2 = 1.0, k

+ = k
� = 1.0, �g = 0.1, �⇧ = 0.1

and ↵ = 10. The elliptical inclusion and the rectangular domain interact through unilateral
contact interface �C . Figure 13 shows the displacement and stress components for a fine mesh
with h = 0.00375 after 200 LaTIn iterations (the LaTIn algorithm has reached a converged
solution state, as shown later on). We observe that the inclusion and the background block
material are not in contact on the left and right of the ellipse and are in contact on the top.
There are stress concentrations where the contact boundary changes from “in contact” to
“not in contact”. We utilise this fine mesh solution as a numerical reference to investigate the
convergence of our LaTin-CutFEM algorithm with mesh refinement and with the number of
LaTin iterations.
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h H1-error E-error

6.0·10�2 7.5087·10�2 5.2406·10�2

3.0·10�2 3.9379·10�2 2.8651·10�2

1.5·10�2 2.0446·10�2 1.4827·10�2

7.5·10�3 9.6445·10�3 7.3295·10�3

(a) Two quadrature points.

h H1-error E-error

6.0·10�2 7.5106·10�2 5.2414·10�2

3.0·10�2 3.9379·10�2 2.8651·10�2

1.5·10�2 2.0446·10�2 1.4827·10�2

7.5·10�3 9.6444·10�3 7.3294·10�3

(b) Four quadrature points.

Table 1: H1 and energy norm error values for two and four quadrature points per interface
segment of elliptical inclusion problem.

(a) P1/P0 (b) P1/P0 (c) P1/P0

(d) P1/P1 (e) P1/P1 (f) P1/P1

Figure 15: Comparison of current stable P1/P1 discretisation versus unstable P1/P0 discreti-
sation for it= {5, 27, 210} LaTIn iterations.
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Two Inclusions Frictionless Contact

4.3 Two inclusions

In our next example, we consider two intersecting inclusions in a rectangular domain ⌦ = [�1.2, 1.2]⇥
[�1.2, 1.2], which is the example referenced throughout this article. The domains are described by the
level set functions

�1(x, y) =
q
(x � x

1
M )2 + y2 � r (61)

�2(x, y) =
q
(x � x

2
M )2 + y2 � r (62)

where r = 0.5, x
1
M = �0.25 and x

2
M = 0.25. The resulting geometry has two triple junctions which

will yield high stress concentrations at these points. We apply a vertical displacement of �1 at the top
boundary of the rectangular domain, a zero vertical displacement at the bottom boundary and zero
Neumann boundary condition everywhere (see Figure 15a). Figure 18 shows the vertical displacement,
the shear stress �xy and the normal stress �yy for the two inclusion problem with no contrast in E1

and E2, E3 on the left and with a contrast of E1 = 1 and E2 = E3 = 10 on the right. In the case
of sti↵er inclusions than the matrix material, the inclusions deviate only slightly from their circular
shape while in the case of no contrast the inclusions undergo a much stronger deformation.

We choose a mesh configuration as displayed in Figure 15b and hierarchically refine the mesh
as described in the previous examples. We compare our coarse numerical solution with the finest
numerical solution (h = 0.008) at LaTin iteration 200. The H1 and energy norm errors with mesh
refinement are shown in Figure 16 for a Young’s modulus of E1 = E2 = E3 = 1 in each domain and
in Figure ??or a contrast of the Young’s modulus of E2 = E3 = 10 for the inclusions to E1 = 1 in the
background domain. In both cases, with and without contrast in the Young’s modulus between the
inclusions and the background domain, we obtain convergence rates of first order which is optimal for
our strategy, which relies on the P1 finite element method.

⌦3

⌦1

⌦2

�1,2 �1,3

�2,3

uy = �1, � · n = 0

uy = 0, � · n = 0

�
·n

=
0

�
·n

=
0

(a) Schematics. (b) Coarsest mesh h = 0.26.

Figure 15: Schematics of two inclusions with boundary conditions and piecewise linear approximation
of the geometry in coarsest mesh used.
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(a) Energy norm error vs iterations and mesh size.
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(b) Convergence rates.

(c) Energy norm error with iteration count for coarser mesh

sizes.

(d) Energy norm error with iteration count for finest solution.

Figure 16: Convergence rates and energy norm error with iteration count for two inclusions with
E1 = E2 = E3 = 1.
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(a) uy . (b) uy .

(c) �xy (d) �xy

(e) �yy (f) �yy

Figure 18: Displacement and stress components of two inclusion for finest mesh with E1 = E2 = E3 = 1
(left) and E1 = 1, E2 = E3 = 10 (right).

27



Applications in Engineering



Braided Composite

�1(xxx) �2(xxx)



Braided Composite



Braided Composite



Braided Composite



Damage in Concrete: Parallelisation 

Linear Stage

Local Stage



Damage in Concrete





Pulsed Thermal Ablation
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Pulsed Thermal Ablation



Pulsed Thermal Ablation



3D Machining Path



Applications in Biomechanics



Cut Finite Element Hip Modelling Motivation

[1] Lee, W-C et al. "Guided growth of the proximal femur for hip displacement in children with cerebral palsy." Journal of Pediatric 
Orthopaedics 36.5, 511-515, (2016). 

Treatment options for hip malformations: (left) untreated hip deformity of a 4-year-old child, 
(middle) well-formed hip 8 years post guided growth surgery1, i.e. insertion of one screw 

through the growth plate of the femur bones, (right) well-formed hip after an invasive femur 
and hip osteotomy, i.e. cutting through the bones and insertion of screws and plates.  

Study stress in hip joint using FE Modelling to enhance understanding of bone growth and 
bone shape changes 



Clinic Pre-processing CutFEM Simulator

Validation

CT/MRI

Gait Analysis

Growth Data

 37 

10.1.3 Study III - Femoral Varisation Derotation Osteotomies 

 
Figure 10.3. A-E: RSA radiographs at postoperative time 0 weeks, 5 weeks, 3 months, 6 months and 12 months, 

respectively. In figure D and E the VDRO is considered radiographic stable. F: Shows the orientation of the 6 degrees 

of freedom with positive values of a right distal femur distal. Hence, translations x+ = medial, y+ = superior and z+ = 

anterior and rotations Rx+ = anterior tilt, Ry+ = internal rotation and Rz+ = varisation. 

Segmented Img.

Configuration, 
Loading Cond. 

Simulated Grown 
Bone 

Finite Deformation Contact

Growth 



Surface Triangulation to CutFEM pipeline
Segmentation with 3D Slicer (Faezeh Moshfeghifar) of CT-

image from the cancer imaging archive (TCIA)  Surface triangulation 



Hip bone surface 
triangulation embedded in 
regular background mesh 

Femur bone surface 
triangulation embedded in 
regular background mesh 

Create Regular Background mesh



Determine inside, outside and intersected cells



Compute signed distance function for each bone 

�1 �2



Geometrical Error (Linear Approximation)



Refine elements that are intersected by surface triangulation



Extract elements and set boundary conditions



Stress Profile 

�yy

�yy

�yy



Stress Profile �yy




