

Cut Finite Element Methods for Contact Problems

Susanne Claus

Department of Computer Science, University of Copenhagen, Denmark.

Al Seminar Series, Copenhagen, Jan 2019

THE ALFRED BENZON FOUNDATION

Geometry Discretisation in Finite Element Methods

Classical FEM

CutFEM

Geometry is meshed

Geometry is embedded in fixed background grid and described by a function (e.g. level set function)

Finite Element Methods

Convergence with mesh refinement

The error decreases with mesh refinement. However, how fast the error decreases with mesh refinement (convergence order) depends on multiple factors.

UCL

Convergence strongly depends on

Accuracy

- Numerical error: error from piecewise polynomial approximation of the solution and of the geometry.
- Mesh Quality: The quality and size of the mesh has a significant impact on the accuracy of the solution

Stability

 Instabilities frequently occur in simulations as numerical errors can grow in the solution process. Numerical error growth needs to be controlled and stabilised carefully. Too much stabilisation leads to inaccuracies.

Bad Element

Good Element

Difficulty of maintaining a high quality mesh

Advantages of Mesh Independent Geometry Descriptions

- 1.reduces the computational cost for preprocessing or transformation of acquired geometry descriptions
- 2. efficient and robust for problems involving evolving geometries undergoing large deformations

FEniCS

Open Source Finite Element Library for the Automated Solution of PDEs

- high level mathematical input language
- generates efficient C++ code from these mathematical inputs
- supports a wide range of different finite element types
- supports simulations in 2D and 3D
- fully parallelised
- active world wide developer community, e.g. Simula Research Laboratory, University of Cambridge, University of Chicago, University of Texas at Austin, KTH Royal Institute of Technology, Chalmers University of Technology.

http://fenicsproject.org

FEniCS Example: Poisson Equation

Consider the elliptic problem

$$\begin{array}{rcl} -\Delta u &=& f \mbox{ in } \Omega, \\ u &=& 0 \mbox{ on } \Gamma. \end{array}$$

Find $u \in V$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} f v dx \quad \forall v \in V$$


```
from dolfin import *
# Create mesh and define function space
mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "CG", 1)
# Define boundary condition
bc = DirichletBC(V, 0.0, DomainBoundary())
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Expression("x[0]*x[1]")
a = inner(grad(u), grad(v))*dx
L = f * v * dx
# Compute solution
u = Function(V)
solve(a == L, u, bc)
```

FEniCS: Under The Hood

a=inner(grad(u), grad(v))*dx

$$a(u,v) = \int \nabla u \nabla v \, dx$$

FEniCS: Under The Hood

Signed Distance Function

Fictitious Domain Poisson Problem

Find
$$u_h \in V_h$$
 such that for all $v_h \in V_h$

$$A(u_h, v_h) = a(u_h, v_h) + j(u_h, v_h) = L(v_h)$$

$$a(u_h, v_h) = \int_{\Omega} \nabla u_h \cdot \nabla v_h \, dx + \int_{\Gamma} (-\underbrace{\nabla u_h \cdot nv_h}_{consistency} - \underbrace{\nabla v_h \cdot nu_h}_{symmetry} + \underbrace{\frac{\gamma}{h}u_hv_h}_{coercivity}) \, ds$$

$$L(v_h) = \int_{\Omega} f \, v_h \, dx + \int_{\Gamma} (-g \, \nabla v_h \cdot n + \frac{\gamma}{h}g \, v_h) \, ds$$

$$j(u_h, v_h) = \gamma_1 \sum_{F \in \mathcal{F}_{\Gamma^*}} h_F(\llbracket \partial_n u_h \rrbracket, \llbracket \partial_n v_h \rrbracket)_F$$

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

Without Enrichment

With Enrichment

level set function

Partitions the domain into one inside and one outside domain (max. 2 different materials)

Zero level set surface contour is a closed surface, i.e it is not possible to describe geometries with open boundaries such as cracks

Â

Use multiple level set functions for complex geometries

N-1 level set functions can described N different subdomains

Level Set Mesh Intersection

Enrichment for jump and kink representation

Claus, S., and P. Kerfriden. "A stable and optimally convergent LaTIn-CutFEM algorithm for multiple unilateral contact problems." IJNME 113.6 (2018): 938-966.

Triple Poisson Problem

Contact Problems

Contact Problem in linear Electicity

Bulk Problem

 $\mathbf{u} = (0, -1)$ Ω^{1} $\Gamma^{1,2}$ Ω^{2} $\Gamma^{2,3}$ Ω^{3} $\mathbf{u} = \mathbf{0}$

For all Ω_i , find the displacement fields $\mathbf{u}^i : \Omega_i \to \mathbb{R}$, such that

$$-\nabla \cdot \boldsymbol{\sigma}(\mathbf{u}^i) = \mathbf{f} \qquad \qquad \text{in } \Omega_i$$

$$\boldsymbol{\sigma}(\mathbf{u}^{i}) = \lambda^{i} \operatorname{tr}(\boldsymbol{\epsilon}(\mathbf{u}^{i})) \boldsymbol{I} + 2 \,\mu_{i} \,\boldsymbol{\epsilon}(\mathbf{u}^{i}) \qquad \text{in } \Omega_{i}$$

UNIVERSITY PRIFYSGOL

$$\mathbf{u}' = \mathbf{g} \text{ on } \partial \Omega_D, \, \boldsymbol{\sigma}(\mathbf{u}_i) \cdot \mathbf{n} = \mathbf{F}_{\mathbf{N}} \text{ on } \partial \Omega_N$$

Here, $\epsilon(\mathbf{u}) = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$ is the strain tensor, **f** is the body force, \mathbf{F}_N is the surface load, **g** the Dirichlet boundary condition, λ^i and μ^i are the two Lamé coefficients (E^i is the Young's modulus, $\nu = 0.3$ is the Poisson's ratio)

$$\mu^{i} = \frac{E^{i}}{2(1+\nu)}, \ \lambda^{i} = \frac{E^{i}\nu}{(1+\nu)(1-2\nu)}$$

Unilateral (

Contact Conditions

For any displacement field \mathbf{u}_i , we decompose the surface traction $\mathbf{F}^i = \boldsymbol{\sigma}(\mathbf{u}_i) \cdot \mathbf{n}^{i,j}$ on the interface $\Gamma^{i,j}$ into its normal and tangential components

$$\mathbf{F}^{i} = \mathbf{F_{n}}^{i} + \mathbf{F_{t}}^{i}.$$

Then, the conditions of contact with Coulomb friction reads

$$\begin{aligned} \left(\mathbf{u}^{j} - \mathbf{u}^{i}\right) \cdot \mathbf{n}^{i,j} &\geq 0, \\ \mathbf{F}^{i} \cdot \mathbf{n}^{i,j} &\leq 0, \\ \left(\left(\mathbf{u}^{j} - \mathbf{u}^{i}\right) \cdot \mathbf{n}^{i,j}\right) \cdot \left(\mathbf{F}^{i} \cdot \mathbf{n}^{i,j}\right) &= 0, \\ \|\mathbf{F}_{\mathbf{t}}^{i}\| &\leq c \, \mathbf{F}^{i} \cdot \mathbf{n}^{i,j} & \text{if } \|\mathbf{\hat{g}}_{t}^{i}\|_{2} = 0 \\ \mathbf{F}_{\mathbf{t}}^{i} &= -c \, \mathbf{F}^{i} \cdot \mathbf{n}^{i,j} \frac{\mathbf{\hat{g}}_{t}^{i}}{\|\mathbf{\hat{g}}_{t}^{i}\|_{2}} & \text{if } \|\mathbf{\hat{g}}_{t}^{i}\|_{2} > 0 \end{aligned}$$

Here, $\mathbf{n}^{i,j}$ is the normal pointing from Ω_i to Ω_j , c is the Coulomb friction coefficient, and $\mathbf{\hat{g}}_t^i := (\mathbf{I} - \mathbf{n}^{i,j} \otimes \mathbf{n}^{i,j}) \cdot (\mathbf{\dot{u}}^j - \mathbf{\dot{u}}^i)$ is the relative tangential velocity

$$\mathbf{u} = (0, -1)$$
$$\Omega^{1}$$
$$\Omega^{2} \Gamma^{2,3} \Omega^{3}$$
$$\mathbf{u} = \mathbf{0}$$

LaTIn Algorithm

Figure 15: Comparison of current stable P1/P1 discretisation versus unstable P1/P0 discretisation for $it = \{5, 27, 210\}$ LaTIn iterations

P1/P1 Stabilised Projection

Figure 15: Comparison of current stable P1/P1 discretisation versus unstable P1/P0 discretisation for $it = \{5, 27, 210\}$ LaTIn iterations

Two Inclusions Frictionless Contact

Applications in Engineering

σ_{zz} -2.400e-01 -0.13 -0.02 0.09 2.000e-01

Damage in Concrete: Parallelisation

Damage in Concrete

Pulsed Thermal Ablation

Pulsed Thermal Ablation

Pulsed Thermal Ablation

3D Machining Path

Applications in Biomechanics

Cut Finite Element Hip Modelling Motivation

Treatment options for hip malformations: (left) untreated hip deformity of a 4-year-old child, (middle) well-formed hip 8 years post guided growth surgery¹, i.e. insertion of one screw through the growth plate of the femur bones, (right) well-formed hip after an invasive femur and hip osteotomy, i.e. cutting through the bones and insertion of screws and plates.

Study stress in hip joint using FE Modelling to enhance understanding of bone growth and bone shape changes

[1] Lee, W-C et al. "Guided growth of the proximal femur for hip displacement in children with cerebral palsy." *Journal of Pediatric Orthopaedics* 36.5, 511-515, (2016).

Surface Triangulation to CutFEM pipeline

Segmentation with 3D Slicer (Faezeh Moshfeghifar) of CTimage from the cancer imaging archive (TCIA)

S: -590.036mm * 1 豪 4 CC 1.25mm Y R: -73.984mm G B: 4 CC 1.25mm 4 CC 1.25mm

Surface triangulation

Create Regular Background mesh

Hip bone surface triangulation embedded in regular background mesh Femur bone surface triangulation embedded in regular background mesh

Determine inside, outside and intersected cells

Compute signed distance function for each bone

Geometrical Error (Linear Approximation)

Refine elements that are intersected by surface triangulation

Extract elements and set boundary conditions

Stress Profile σ_{yy}

Stress Profile σ_{yy}

