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Overview of talk

Introduction to Deep Latent Variable Models (DLVM)

Contribution 1: On the boundedness of the likelihood of DLVMs

Contribution 2: Missing data imputation using the exact conditional distribution

Contribution 3: Training and imputation on incomplete data sets
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Probabilistic generative and latent variable models
Mohamed and Rezende (2017)

A generative model:

“Describes a process that is assumed to rise to some data” (MacKay, 2003).

• In unsupervised learning, we model the (joint) density p(x).
• The model allows for generating data: i.e. x ∼ p(x)

• Typically we assume some factorisation of p(x), e.g.

x(1) x(2) x(3) x(4)

n

In a latent variable model we assume that there is an unobserved random variable z.
• The joint density p(x, z) is modelled
• The model allows for generating x, z ∼ p(x, z).
• Typically we assume some factorization of p(x, z), e.g.

z x

n

• Dimension reduction: we can think of z as a code summarizing multivariate data x.



3

Probabilistic generative and latent variable models
Mohamed and Rezende (2017)

A generative model:

“Describes a process that is assumed to rise to some data” (MacKay, 2003).

• In unsupervised learning, we model the (joint) density p(x).
• The model allows for generating data: i.e. x ∼ p(x)

• Typically we assume some factorisation of p(x), e.g.

x(1) x(2) x(3) x(4)

n

In a latent variable model we assume that there is an unobserved random variable z.
• The joint density p(x, z) is modelled
• The model allows for generating x, z ∼ p(x, z).
• Typically we assume some factorization of p(x, z), e.g.

z x

n

• Dimension reduction: we can think of z as a code summarizing multivariate data x.



4

Deep latent variable models (DLVMs)
Mohamed and Rezende (2017)

Probabilistic generative models:
+ Well founded framework for model building, inference and prediction.
÷ Limited complexity: Mainly conjugate and linear models
÷ Learning is computational expensive

Deep neural networks:
+ Rich non-linear models
+ Scalable learning using stochastic gradient decent
÷ Only give point estimates
÷ Typically discriminative and non-probabilistic

Deep latent variable models combine the approximation abilities of deep neural
networks and the statistical foundations of generative models.

Independently invented by Kingma and Welling (2014), as variational autoencoders, and
Rezende et al. (2014) as deep latent Gaussian models.
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Deep latent variable models (DLVMs)
Kingma and Welling (2014) and Rezende et al. (2014)

Assume that (xi, zi)i≤n are i.i.d. random variables driven by the model:{
z ∼ p(z) (prior)
x ∼ pθ(x | z)

= Φ(x | fθ(z))

(observation model)

z

x

θ

n

where
• z ∈ Rd is the latent variable,

• x ∈ X is the observed variable.

• the function fθ : Rd → H is a (deep) neural network called the decoder,

• (Φ(· | η))η∈H is a parametric family called the output density.

The output density is usually very simple: unimodal and fully factorised
(e.g. multivariate Gaussians or products of multinomials).
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The role of the prior

As in regular factor analysis, the prior
distribution of the latent variable is often an
isotropic Gaussian p(z) = N (z|0d, Id).

Factor analysis (FA)

In FA the generative process is:
• z ∼ N (0d, Id),

• x|z ∼ N (Wz + µ,Ψ).

z

x

More complex, learnable priors have also been considered.

For example, in Harchaoui et al. (2018) looked at mixtures of K Gaussians:

p(z) =

K∑
k=1

πkN (z|µk,Σk),

where the parameters π1, ..., πK ,µ1, ...,µK ,Σ1, ...ΣK are learned.
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The role of the decoder
The role of the decoder fθ : Rd → H is:

• To transform z (the code) into parameters η = fθ(z) of the output density Φ(· | η).
• The weights θ of the decoder are learned.

Illustrative example of a simple non-linear decoder (d = 1, p = 2, Gaussian outputs).

Here, fθ transforms z into both a mean and a covariance matrix.
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DLVMs applications: density estimation on MNIST
Rezende et al. (2014)

Training data Model samples
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DLVMs applications: density estimation on (Brendan) Frey faces
Rezende et al. (2014)

Training data Model samples
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DLVMs applications: missing data imputation
Rezende et al. (2014)
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DLVMs applications: molecular design
Grammar Variational Autoencoder by Kusner et al. (2017)
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Learning DLVMs
Kingma and Welling (2014) and Rezende et al. (2014)

Given a data matrix X = (x1, . . . , xn)ᵀ ∈ X n, the log-likelihood function for a DLVM is

`(θ) = log pθ(X)︸ ︷︷ ︸
p(X|θ)

=

n∑
i=1

log pθ(xi) where pθ(xi) =

∫
Rd

pθ(xi | z)p(z) dz.

We would like to find a MLE, θ̂ ∈ arg maxθ `(θ).

However, for complicated output density pθ(x | z)

• pθ(x) is intractable rendering direct MLE intractable

• pθ(z | x) is intractable rendering EM intractable

• Stochastic EM is not scalable to large n and moderate d
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Variational Inference (VI)
Kingma and Welling (2014), Rezende et al. (2014), and Blei et al. (2017)

VI approximatively maximises the log-likelihood by maximising the evidence lower bound

L(θ,Q) = Ez∼Q

[
log

pθ(X,Z)

Q(Z)

]
= `(θ)−KL(Q || pθ(Z | X)) ≤ `(θ)

wrt. (θ,Q), where
• Q is the variational distribution over the space of codes Rn×d,
• X = (x1, . . . , xn)ᵀ ∈ X n and Z = (z1, . . . , zn)ᵀ ∈ Rn×d.

Normally in VI, Q would come for a parametric family of distribution (Qm)m∈M,
and we would maximise L(θ,Qm) wrt. (θ,m).

However, computing a distribution over Rn×d is too expensive for large datasets.
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Amortised Variational Inference (AVI)
Kingma and Welling (2014) and Rezende et al. (2014)

Amortised inference scales up VI by
(a) Writing Q as a product of conditional variational distributions:

Qγ(Z) =

n∏
i=1

qγ(zi|xi)

(b) Learning a function gγ that transforms each data point xi into the parameters of
the corresponding conditional q(zi|xi) = Ψ(zi|gγ(xi)).

The family (Ψ(·|κ))κ∈K is a parametric family of distributions over Rd (usually
Gaussians), gγ : X → K is a neural net called the inference network.

Inference for DLVMs solves the optimisation problem

max
θ∈Θ,γ∈Γ

L(θ,Qγ),

typically using stochastic gradient descent.1

A DLVM combined with AVI is called a variational autoencoder (VAE).

z

x

θ

γ

n

1Stochastic gradients of L(θ,Qγ) can be calculated using the reparameterization trick.
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Variational distribution
Note that:
• We can consider the variational distribtion

to be an approxiamtion of the posterior
qγ(z | x) ≈ pθ(z | x)

• The bound is tight, L(θ,Qγ) = `(θ), when
qγ(z | x) = pθ(z | x)
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Introduction to Deep Latent Variable Models (DLVM)

Contribution 1: On the boundedness of the likelihood of DLVMs

Contribution 2: Missing data imputation using the exact conditional distribution

Contribution 3: Training and imputation on incomplete data sets
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Was it sensible to maximise the likelihood in the first place?

If we see the prior as a mixing distribution, DLVMs are continuous mixtures of
distribution from the observation model:

pθ(x) =

∫
Rd

pθ(x | z)p(z) dz =

∫
Rd

Φ(x|fθ(z))p(z) dz.

But maximum likelihood for finite Gaussian mixtures is ill-posed:
• the likelihood function is unbounded (Day, 1969) and
• the parameters with infinite likelihood are pretty terrible.

Hence the question: Is maximum likelihood well-posed for DLVMs?



17

On the boundedness of the likelihood of DLVMs
Mattei and Frellsen (2018)

Consider a DLVM with a p-variate Gaussian observation model where

`(θ) =

n∑
i=1

log

∫
Rd
N (x|µθ(z),Σθ(z))p(z) dz.

Like Kingma and Welling (2014), consider a MLP decoder with h ∈ N∗ hidden units of the form

µθ(z) = V tanh(Wz + a) + b

µ
θ
(i,w)
k

(z) = xi∗

Σθ(z) = exp(αᵀ tanh(Wz + a) + β)Ip

Σ
θ
(i,w)
k

(z) = exp(αk tanh(αkwᵀz)− αk)Ip

where θ = (W, a,V,b,α, β).

Now consider a subfamily with h = 1 and

θ
(i,w)
k = (αkwᵀ, 0, 0, xi∗ , αk,−αk),

where (αk)k≥1 is a nonnegative real sequence

αk →∞ as k→∞.

Image from http://deeplearning.net/tutorial/mlp.html

http://deeplearning.net/tutorial/mlp.html
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ML is ill-posed for a general Gaussian DLVM
Mattei and Frellsen (2018)

Theorem
For all i∗ ∈ {1, . . . , n} and w ∈ Rd \ {0}, we have that limk→∞ `

(
θ
(i∗,w)
k

)
=∞.

Proof main idea: the contribution log p
θ
(i,w)
k

(xi∗) of the i∗-th observation explodes while all
other contributions remain bounded below.

Do these infinite suprema lead to useful generative models?

Proposition

For all k ∈ N∗, i∗ ∈ {1, . . . , n} and w ∈ Rd \ {0}, the distribution p
θ
(i∗,w)
k

(x) is is spherically
symmetric and unimodal around xi∗ .

No, because of the constant mean function.

What about other parametrisations?
• The used MLP is a subfamily.
• Universal approximation abilities of neural networks.
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For all i∗ ∈ {1, . . . , n} and w ∈ Rd \ {0}, we have that limk→∞ `

(
θ
(i∗,w)
k

)
=∞.

Proof main idea: the contribution log p
θ
(i,w)
k

(xi∗) of the i∗-th observation explodes while all
other contributions remain bounded below.

Do these infinite suprema lead to useful generative models?

Proposition

For all k ∈ N∗, i∗ ∈ {1, . . . , n} and w ∈ Rd \ {0}, the distribution p
θ
(i∗,w)
k

(x) is is spherically
symmetric and unimodal around xi∗ .

No, because of the constant mean function.

What about other parametrisations?
• The used MLP is a subfamily.
• Universal approximation abilities of neural networks.

What about discrete DLVM?
It is easy to show that discrete DLVMs do
not suffer from unbounded likelihood.
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Tackling the unboundedness of the likelihood
(Mattei and Frellsen, 2018)

Proposition

Let ξ > 0. If the parametrisation of the decoder is such that the image of Σθ is included in

Sξp = {A ∈ S+
p |min(Sp A) ≥ ξ}

for all θ, then the log-likelihood function is upper bounded by −np log
√
πξ

Note: Such constraints can be implemented by added ξIp to Σθ(z).
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A data-dependent likelihood upper bounds
Mattei and Frellsen (2018) and figure extend from Cremer et al. (2018)

We can interpret DLVM as parsimonious submodel of nonparametric mixture model

pG(x) =

∫
H

Ψ(x|η) dG(η) `(G) =

n∑
i=1

log pG(xi).

• The model parameter is the mixing distribution G ∈ P, where P is the set of all probability
measures over parameter space H.

• This is a DLVM, when G is generatively defined by: z ∼ p(z); η = fθ(z).

This gives us an immediate upper bound on the
likelihood for any decoder fθ:

`(θ) ≤ max
G∈P

`(G)

Theorem
Assume that (Ψ(· | η))η∈H is the family of multivariate
Bernoulli distributions or Gaussian distributions with the
spectral constraint. The likelihood of the nonparametric
mixture model is maximised for a finite mixture model of
k ≤ n distributions from the family (Ψ(· | η))η∈H.

`(✓)

`(Ĝ)

ELBO(✓, q⇤X)

ELBO(✓, q�,X)

parsimony gap
tight when f✓ has large capacity

tight when g� has large capacity

amortisation gap

approximation gap
tight when the posterior belongs

to the variational family
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Unboundedness for a DLVM with Gaussian outputs (Frey faces)
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Overview of talk

Introduction to Deep Latent Variable Models (DLVM)

Contribution 1: On the boundedness of the likelihood of DLVMs

Contribution 2: Missing data imputation using the exact conditional distribution

Contribution 3: Training and imputation on incomplete data sets
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Data imputation with variational autoencoders
Mattei and Frellsen (2018)

After training a couple encoder/decoder, we consider a new data point x = (xobs, xmiss).

In principle we can impute xmiss using

pθ(xmiss | xobs) =

∫
Rd

Φ(xmiss | xobs, fθ(z))p(z|xobs) dz.

Since this integral is intractable, Rezende
et al. (2014) suggested using pseudo-Gibbs
sampling, by forming a Markov chain
(zt, x̂miss

t )t≥1

• zt ∼ Ψ(z | gγ(xobs, x̂miss
t−1 ))

• x̂miss
t ∼ Φ(xmiss | xobs, fθ(zt))

z

x

θ

γ

n
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Since this integral is intractable, Rezende
et al. (2014) suggested using pseudo-Gibbs
sampling, by forming a Markov chain
(zt, x̂miss

t )t≥1

• zt ∼ Ψ(z | gγ(xobs, x̂miss
t−1 ))

• x̂miss
t ∼ Φ(xmiss | xobs, fθ(zt))

We propose Metropolis-within-Gibbs:
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Comparing pseudo-Gibbs and Metropolis-within-Gibbs
Mattei and Frellsen (2018)

The F1 score is the harmonic mean of the precision and recall, F1 = ((recall−1 + precision−1)/2)−1 .
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What happens if the training set is incomplete?

Assume that some of the training and test data is missing-at-random (MAR).

We can then split each sample i ∈ {1, . . . , n} into
• the observed features xo

i and
• the missing features xm

i .

Under the MAR assumption, the relevant quantity to maximise is the likelihood of the
observed data equal to

`o(θ) =

n∑
i=1

log pθ(xo
i ) =

n∑
i=1

log

∫
pθ(xo

i | z)p(z) dz.

Direct MLE is intractable, but we can derive tractable tight lower bounds of `(θ).
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The importance-weighted autoencoder (IWAE)
Burda et al. (2016)

Let us revisit the full data likelihood:

`(θ) =

n∑
i=1

log pθ(xi) =

∫
Rd

pθ(xi | z)p(z) dz.

VAE bound

L(θ,γ) =

n∑
i=1

Ez∼qγ(z|x)

[
log

pθ(xi | zi)p(zi)

qγ(zi|xi)

]
= `(θ)−KL(qγ(Z | X) || pθ(Z | X)) ≤ `(θ)

IWAE bound
We can obtain a strictly tight bound based on importance sampling

LK(θ, γ) =
n∑

i=1

Ezi1,...,ziK∼qγ(z|xi)

log
1
K

K∑
k=1

pθ(xi|zik)p(zik)

qγ(zik|xi)

 .
Here qγ(z|xi) play the role of a proposal distribution close to the posterior pθ(z|x), and

L(θ,γ) = L1(θ,γ) ≤ L2(θ,γ) ≤ . . . ≤ LK(θ,γ) −−−−→
K→∞

`(θ).
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The missing data importance-weighted autoencoder (MIWAE) bound
Mattei and Frellsen (2019)

For the case of missing data, we propose the variational distribution

qγ(z|xo) = Ψ(z|gγ(ι(xo)),

where:
• The set (Ψ(·|κ))κ∈K is the variational family.
• The function gγ : X → K is the encoder.
• ι is an imputation function chosen beforehand that transforms xo into a complete

input vector ι(xo) ∈ X such that ι(xo)o = xo.

Following Burda et al. (2016), we can use the distribution qγ to build lower bounds of `o(θ)

Lo
K(θ, γ) =

n∑
i=1

Ezi1,...,ziK∼qγ(z|xo
i )

log
1
K

K∑
k=1

pθ(xo
i |zik)p(zik)

qγ(zik|xo
i )

 .
and show that

Lo
1(θ,γ) ≤ Lo

2(θ,γ) ≤ . . . ≤ Lo
K(θ,γ) −−−−→

K→∞
`(θ).
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Imputation function
When K →∞, the bound is tight for any
imputation function ι

We use zero-imputation.
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2(θ,γ) ≤ . . . ≤ Lo
K(θ,γ) −−−−→
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`(θ).

Imputation function
When K →∞, the bound is tight for any
imputation function ι

We use zero-imputation.

MVAE bound
When K = 1, the bound resembles the VAE
bound and we call it MVAE.

This bound was independently derived
independently by Nazabal et al. (2018) in
concurrent work.
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Imputation with MIWAE
Mattei and Frellsen (2019)

For the single imputation problem the optimal decision-theoretic choice is

x̂m = E[xm|xo] =

∫
xmpθ(xm|xo) dxm =

∫∫
xmpθ(xm|xo, z)pθ(z|xo) dzdxm,

This is intractable, but can be estimated using self-normalised importance sampling
with the proposal distribution pθ(xm|xo, z)qγ(z|xo), leading to the estimate

E[xm|xo] ≈
L∑

l=1

wl xm
(l),

where (xm
(1), z(1)), . . . , (xm

(L), z(L)) are i.i.d. samples from pθ(xm|xo, z)qγ(z|xo) and

wl =
rl

r1 + . . .+ rL
, with rl =

pθ(xo|z(l))p(z(l))

qγ(z(l)|xo)
.

Here, we leverage the fact that qγ(z|xo) is a good approximation of pθ(z|xo).

Multiple imputation, i.e. sampling from pθ(xm|xo), can be done using sampling
importance resampling according to the weights wl for large L.
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Convolutional MIWAE on binary MNIST (50% MAR pixels)
Mattei and Frellsen (2019)

’

Random incomplete samples from the MNIST training data set, and the imputations obtained by MIWAE
(trained with K = 50 importance weights, and imputed with L = 10 000 importance weights)
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Convolutional MIWAE on binary MNIST (50% MAR pixels)
Mattei and Frellsen (2019)
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Convolutional MIWAE on binary MNIST (50% MAR pixels)
Mattei and Frellsen (2019)
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imputation scheme. The MIWAE model was trained using K = 50 importance weights.
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Multiple imputation on binary MNIST (50% MAR pixels)
Mattei and Frellsen (2019)

To evaluate multiple imputation, we consider the task of classifying the incomplete
binary MNIST data set.

Test accuracy Test cross-entropy

Zero imp. 0.9739 (0.0018) 0.1003 (0.0092)
missForest imp. 0.9805 (0.0018) 0.0645 (0.0066)
MIWAE single imp. 0.9847 (0.0009) 0.0510 (0.0035)
MIWAE multiple imp. 0.9868 (0.0008) 0.0509 (0.0044)
Complete data 0.9866 (0.0007) 0.0464 (0.0026)

Test accuracy and cross-entropy obtained by training a convolutional network using the imputed
versions of the static binarisation of MNIST. The numbers are the mean of 10 repeated trainings with

different seeds and standard deviations are shown in brackets.
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Single imputation of UCI data sets (50% MAR)
Mattei and Frellsen (2019)

For all data sets we train DLVMs with the same general properties:
• Both encoder and decoder are multi-layer perceptrons with 3 hidden layers (128

hidden units) and tanh activations.
• Products of Student’s t for both the variational family and the observation model
• Same number of gradient steps (500 000) for all data sets, and no regularisation.

Banknote Breast Concrete Red White Yeast

MIWAE 0.446 (0.038) 0.280 (0.021) 0.501 (0.040) 0.643 (0.026) 0.735 (0.033) 0.964(0.057)
MVAE 0.593 (0.059) 0.318 (0.018) 0.587(0.026) 0.686 (0.120) 0.782 (0.018) 0.997 (0.064)
missForest 0.676 (0.040) 0.291 (0.026) 0.510 (0.11) 0.697 (0.050) 0.798 (0.019) 1.41 (0.02)
PCA 0.682 (0.016) 0.729 (0.068) 0.938 (0.033) 0.890 (0.033) 0.865 (0.024) 1.05(0.061)
kNN 0.744 (0.033) 0.831 (0.029) 0.962(0.034) 0.981 (0.037) 0.929 (0.025) 1.17 (0.048)
Mean 1.02 (0.032) 1.00 (0.04) 1.01 (0.035) 1.00 (0.03) 1.00 (0.02) 1.06 (0.052)

Mean-squared error for single imputation for various continuous UCI data sets
(mean and standard deviations over 5 randomly generated incomplete data sets).
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Summary

Take-home message

• DLVMs are flexible generative models.
• Showed that MLE is ill-posed for unconstrained DLVMs with Gaussian output.
• Propose how to tackle this problem using constraints.
• Provided an upper bound for the likelihood in well-posed cases.
• Showed how to draw samples according to the exact conditional distribution with

missing data.
• Showed how to train DLVM with missing data
• Obtained state-of-the-art performance in missing data imputation

Thank you for your attention!

Questions?
−20

−10
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